MINERAL FOULING ON THE MA-40 ANION EXCHANGE MEMBRANE WITH THE ELECTRODIALYSIS OF STRONGLY MINERALIZED NATURAL WATERS
Abstract
Mineral fouling of ion exchange membranes is one of the major problems during electrodialysis operation. The purpose of this work is the detection of the relationship between the structural and transport properties of the MA-40 anion exchange membrane after prolonged use desalinating and concentrating natural waters.
Structural changes of the MA-40 anion exchange membrane after continuous operation in electrodialysis stacks of various types are evaluated by scanning electron microscopy. The physicochemical characteristics of membranes were identified by the standard procedures. The conductivity was measured by the contact–difference method. The diffusion properties of the membranes were determined by estimating the amount of electrolyte, which was transported through the membrane to the water.
The influence of structural changes in the MA-40 anion-exchange membrane after the electrodialysis of natural waters on the physical-chemical and electrochemical characteristics were estimated. The possible mechanisms of decreasing the operational characteristics of MA-40 membranes, which arise due to the demineralization and concentrating of natural waters, were revealed via the electrodialysis method. The main cause of reduction of the transport properties of membranes from near-electrode sections from the reverse electrodialysis stack during demineralization of natural waters from the Aral region is precipitation occurring both on the membrane surface and in its bulk. If on the membrane surface Mg insoluble compounds are preferably formed, then in the membrane phase on both sides of the surface the formation of CaCO3 is established. The main reason for the deterioration of the operational characteristics of the MA-40 anion-exchange membrane after electrodialysis concentration of natural waters is the destruction of ionogenic groups of the membranes, which causes a decrease in the total exchange capacity. The increase in surface macroporosity was accompanied by a slight mineral scaling of a carbonate nature.
ACKNOWLEDGMENTS
The authors are grateful to the Director of JSC "Membrane Technologies", Dr. Sci. (Techn.), laureate of the State Prize of the Kazakh SSR in the field of science and technology Tskhay A.A. for providing membrane samples for research.
Microphotographs of the membranes surface were obtained at the CCUSE of VSU.
This work was financially supported by RFBR grant (project No 15-08-05031).
Downloads
References
2. Uilson Dzh. R. Demineralization by Electrodialysis Method. Moscow, Gosatomizdat Publ., 1963, 351 p. (in Russian)
3. Korngold E., de Körösy F., Rahav R., Taboch M.F. Desalination, 1970, vol. 8, pp. 195-220. DOI:10.1016/S0011-9164(00)80230-1
4. Kastuchik A. S., Shaposhnik V. A. Sorption and Chromatographic Processes, 2009, vol. 9, no. 1, pp. 51-57. Available at: http://www.sorpchrom.vsu.ru/articles/20090104.pdf (in Russian).
5. Ivakina E. I., Shatalov A. Ya., Isayev N. I. Ion-exchange Membranes in Electrodialysis. Leningrad, Chemistry Publ., 1970, pp. 78-84. (in Russian)
6. Bobreshova O. V., Lapshina Т. Е., Shatalov А. Ya. Russ. J. Appl. Chem., 1980, vol. 53, no. 3, pp. 665-667. (in Russian)
7. Bobreshova O. V., Shatalov А. Ya. Russ. J. Phys. Chem., 1977, vol. 51, no. 1, pp. 203-204. (in Russian)
8. Shaposhnik V. A., Zubets N. N., Strygina I. P., Mill’ B. E. Russ. J. Appl. Chem., 2001, vol. 74, no. 10, pp. 1653-1657. DOI: 10.1023/A:1014896916981
9. Katz W. E., Desalination, 1979, vol. 28, pp. 31-40. DOI: 10.1016/S0011-9164(00)88124-2
10. Grebenyuk V. D., Strizhak M. P. Water Chemistry and Technology, 1985, vol. 7, no. 5, pp. 39-40. (in Russian)
11. Meyer K. H., Straus W. Helv. Chem. Acta, 1940, vol. 23, pp. 795-800. DOI: 10.1002/hlca.19400230199
12. Grebenyuk V. D., Маzо А. А. Water Desalination by Ion-exchangers. Moscow, Chemistry Publ., 1980, 256 p. (in Russian).
13. Gregor H. P., Bruins P. F., Rothenberg M. Ind. Eng. Chem. Process Des. Dev., 1965, vol. 4, no. 1, pp. 3-6. DOI: 10.1021/i260013a002
14. Rosenberg N. W., Tirrell C. E. Ind. Eng. Chem., 1957, vol. 49, no. 4, pp. 780-784. DOI: 10.1021/ie50568a047
15. Shaposhnik V. A., Vasil’eva V. I., Grigorchuk O. V. Russ. J. Electrochem., 2006, vol. 42, no. 11, pp. 1202-1207. DOI: 10.1134/S1023193506110061 (in Russian)
16. Vasil’eva V. I., Shaposhnik V. A., Grigorchuk O. V., Petrunya I. P. Desalination, 2006, vol. 192, no. 1-3, pp. 408-414. DOI: 10.1016/j.desal.2005.06.055
17. Lopatkova G., Basova O., Volodina E., Pismenskaya N., Nikonenko V., Chaabane L., Cot D. "Environmental Problems and Ecological Safety", Proceedings of the International Workshop, September - October 2004, Germany, pp. 145-153.
18. Saldadze G. K. Ion-Selective Membranes and Electromembrane Processes. Moscow, NIITEKChim. Publ., 1986, pp. 18-24. (in Russian)
19. Berezina N. P., Ivina O. P., Rubinina D. V. Diagnosis of Ion-Exchange Membranes after Real Electrodialysis. Krasnodar, Kuban. Gos. Univ. Press., 1990, 11 p. (in Russian)
20. Saldadze K. M., Klimova S. V., Titova N. A., Bazikova G. D. Ion-Exchange Membranes in Electrodialysis. Leningrad, Chemistry Publ., 1970, 65 p. (in Russian)
21. Vasil’eva V. I., Bitjutskaya L. A., Zaychenko N. A., Grechkina M. V., Botova T. S., Agapov B. L. Sorption and Chromatographic Processes, 2008, vol. 8, no. 2, pp. 260-271. Available at: http://www.sorpchrom.vsu.ru/articles/20080210.pdf (in Russian)
22. Pis'menskaya N. D., Nikonenko V. V., Mel'nik N. A., Shevtsova K. A., Dammak L., Larchet C. Petroleum Chemistry, 2011, vol. 51, iss. 8, pp. 610–619. DOI: 10.1134/S0965544111080081. (in Russian).
23. Vasil’eva V. I., Akberova E. M., Zhiltsova A. V., Chernykh E. I., Sirota E. A., Agapov B. L. J. Surface Investigation. Xray, Synchrotron and Neutron Techniques, 2013, vol. 7, no. 5, pp. 833-840. DOI:10.1134/S1027451013050194
24. Akberova E. M., Malykhin M. D. Sorption and Chromatographic Processes, 2014, vol. 14, no. 2, pp. 232-239. Available at: http://www.sorpchrom.vsu.ru/articles/20140207.pdf (in Russian)
25. Yatsev A. M., Akberova E. M., Goleva E. A., Vasil’eva V. I., Malykhin M. D. Sorption and chromatographic processes, 2017, vol. 17, no. 2, pp. 313-322. Available at: http://www.sorpchrom.vsu.ru/articles/20170219.pdf (in Russian)
26. Vasil’eva V. I., Pismenskaya N. D., Akberova E. M., Nebavskaya K. A. Russ. J. Phys. Chem. A, 2014, vol. 88, no. 8, pp. 1293-1299. DOI:10.1134/S0036024414080317
27. Vasil'eva V. I., Akberova E. M., Shaposhnik V. A., Malykhin M. D., Russ. J. Electrochem, 2014, vol. 50, pp. 789-797. DOI:10.1134/S102319351408014X
28. Demina O. A., Berezina N. P., Sata Т., Demin А. V. Russ. J. Electrochem, 2002, vol. 38, iss. 8, pp. 896–902. DOI: 10.1023/A:1016874014470
29. Berezina N. P., Kononenko N. A., Dvorkina G. A., Shel'shedov N. V. Physical-chemical Properties of Ion-Exchange Materials. Krasnodar, Kuban. Gos. Univ. Publ., 1999, 82 p. (in Russian)
30. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. Advances in Colloid and Interface Science, 2008, vol. 139, p. 3-28. DOI: 10.1016/j.cis.2008.01.002
31. Shaposhnik V. A., Yemel'yanov D. E., Drobysheva I. V., Colloid Journal, 1984, vol. 46, no. 4, pp. 820-822. (in Russian)
32. Sirota E. A., Kranina N. A., Vasil’eva V. I., Malykhin M. D., Selemenev V. F. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2011, no. 2, pp. 53-59. Available at: http://www.vestnik.vsu.ru/program/view/view.asp?sec=chembio&year=2011&num=02&f_name=2011-02-08 (in Russian)
33. Vasil’eva V. I., Zhil’tsova A. V., Malykhin M. D., Zabolotskii V. I., Lebedev K. A., Chermit R. Kh., Sharafan M. V. Russ. J. Electrochem., 2014, vol. 50, no. 2, pp. 120-128. DOI: 10.1134/S1023193514020062 (in Russian)
34. Lur'ye Yu. Yu. Handbook of Analytical Chemistry. Moscow, Alliance Publ., 1989, 446 p. (in Russian)
35. Nagaaki T. Journal of the Chemical Society of Japan, 1973, no. 3, p. 482.