The Physical Characteristics of Nanofiller and Interfacial Regions in Nanocomposites with Polymer/Carbon Nanotubes and Elastomeric Vitreous Matrix

Keywords: nanocomposite, carbon nanotubes, polymer matrix, elasticity modulus, phase state, rule of mixtures.

Abstract

Purpose. The purpose of this study is to separately defi ne the elasticity modulus of nanocomposites
with polydicyclopentadiene/multilayer carbon nanotubes, specifi cally, of the nanofi ller
and interfacial regions. To achieve this we used a micromechanical model.
Results. According to our estimates, the elasticity modulus of carbon nanotubes, or aggregates,
in polymer matrix nanocomposite is approximately two orders of magnitude less than the
nominal value of this parameter for one single carbon nanotube, while the elasticity modulus
of interfacial regions is approximately two times than the elasticity modulus of the matrix
polymer. Our data clearly demonstrates that it’s incorrect to use the nanofi ller’s nominal characteristics,
its elasticity modulus in particular, for determining the corresponding characteristics
of the nanocomposite. Nevertheless, it’s possible to use the real elasticity modulus values of
carbon nanocomposite aggregates when using the general rule of mixtures to determine this
value for the nanocomposite with suffi cient accuracy. It’s important to note that the elasticity
modulus of carbon nanotubes in an elastomeric matrix is much lower than the elasticity modulus
in a vitreous matrix even if it’s the same nanocomposite. This means that the given parameter
is determined not only by the size and structure of the nanofi ller aggregates, but also
other factors, such as the stiffness of the polymer matrix around the aggregate, the effectiveness
with which the polymer matrix transfers mechanical stress to the nanofi ller, and so on.
When we used a modifi ed rule of mixtures to determine the elasticity modulus of nanocomposites,
we discovered that the so called length effi ciency factor of carbon nanotubes, which is
calculated using the modifi ed rule of mixtures, is much (several orders of magnitude) lower than
the one proposed theoretically, and that is especially evident in case of nanocomposites with
an elastomeric matrix.
Conclusion. Thus, we conclude, that the elasticity modulus of nanocomposite components is a
strong function of their phase state, and that it’s possible to determine the real characteristics
of these components by correctly using the rule of mixtures.

 

 

 

REFERENCES
1. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes // Macromolecules,
2006, v. 39(16), p. 5194. DOI: https://doi.org/10.1021/ma060733p
2. Schaefer D. W., Justice R. S. How nano are nanocomposites?// Macromolecules, 2007, v. 40(24), p. 8501.
DOI: https://doi.org10.1021/ma070326w
3. Coleman J. N., Cadek M., Ryan K. P., Fonseca A., Nady J. B., Blau W. J., Ferreira M. S. Reinforcement of
polymers with carbon nanotubes. The role of an ordered polymer intwrfacial region. Experimental and
modeling // Polymer, 2006, v. 47(23), pp. 8556–8561.
DOI: https://doi.org/10/1016/j.polymer.2006.10.014
4. Kozlov G. V., Yanovskii Yu. G., Zaikov G. E. Particulate Filled Polymer Nanocomposites. Structure,
Properties, Perspectives. New York, Nova Science Publishers, Inc., 2014. DOI: https://doi.org/10.1002/9783527644346.ch3
5. Mikitaev A. K., Kozlov G. V., Zaikov G. E. Polymer Nanocomposites: Variety of Structural Forms and Applications. New York, Nova Science Publishers, Inc., 2008.
6. Jeong W., Kessler M.R. Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadiene composites. Chem. Mater., 2008.
v. 20(22), р. 7060. DOI: https://doi.org/10.1021/cm8020947
7. Koerner H., Liu W., Alexander M., Mirau P., Dowty H., Vaia R. A. Deformation – morphology correlations
in electrically conductive carbon nanotube – thermoplastic polyurethane nanocomposites //
Polymer, 2005, v. 46(12), р. 4405. DOI: https://doi.org/10.1016/j.polymer.2005.02.025
8. Ahmed S., Jones F. R. A review of particulate reinforcement theories of polymer composites // J.
Mater. Sci., 1990, v. 25(12), pp. 4933–4942. DOI: https://doi.org/10.1007/bf00580110
9. Aygubova A. Ch., Kozlov G. V., Magomedov G. M., Zaikov G. E. The elastic modulus of carbon nanotube
aggregates in polymer nanocomposites. J. Characterization and Development of Novel Mater., 2016, v. 8(3),
p. 227.
10. Khan U., May P., O’Neill A., Bell A.P., Boussac E., Martin A., Semple J., Coleman J. N. Polymer reinforcement
using liquid-exfoliated boron nitride nanosheets // Nanoscale, 2013, v. 5(3), pp. 581-587. DOI: https://doi.org/10.1039/c2nr33049k

 

Downloads

Download data is not yet available.

Author Biographies

Luiza В. Atlukhanova, Dagestan State Medical University, 1, Lenina pl., 367000 Makhachkala, Russian Federation

Cand. Sci. (Ped.), Associate Professor of the Department of Biophysics,
Informatics and Medical Devices, Dagestan State Medical University, Makhachkala, Russian Federation;
e-mail: bremovna77@mail.ru.

Igor V. Dolbin, Kh. M. Berbekov Kabardino-Balkarian State University, 173, Chernyshevski str., 360004 Nal’chik, Russian Federation

Cand. Sci. (Chem.), Associate Professor of the Department of Organic Chemistry
and High-Molecular Compounds, Kh. M. Berbekov Kabardino-Balkarian State University, Nal’chik,
Russian Federation; e-mail: i_dolbin@mail.ru. 

Georgii V. Kozlov, Kh. M. Berbekov Kabardino-Balkarian State University, 173, Chernyshevski str., 360004 Nal’chik, Russian Federation

Management of Research and Innovation Activities, Kh. M. Berbekov Kabardino-
Balkarian State University, Nal’chik, Russian Federation; e-mail: i_dolbin@mail.ru. 

Published
2019-12-19
How to Cite
AtlukhanovaL. В., Dolbin, I. V., & Kozlov, G. V. (2019). The Physical Characteristics of Nanofiller and Interfacial Regions in Nanocomposites with Polymer/Carbon Nanotubes and Elastomeric Vitreous Matrix. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(4), 471-477. https://doi.org/10.17308/kcmf.2019.21/2358
Section
Статьи