Regarding Physical and Chemical Transformations with the Involvement of Water Near –45 °C

  • Georgy S. Bordonsky Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences, POB 1032, 16-a Nedorezova str., 672002 Chita, Russian Federation http://orcid.org/0000-0002-0009-0822
  • Alexander A. Gurulev Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences, POB 1032, 16-a Nedorezova str., 672002 Chita, Russian Federation https://orcid.org/0000-0003-2232-3583
Keywords: supercooled water,, second critical point,, Widom line,, acceleration of chemical reactions

Abstract

Objective. A hypothesis about a new mechanism for accelerating chemical reactions involving
supercooled water near -45 °С is presented. The hypothesis is based on the properties of the
second critical point of water at a temperature of –53 °C and a pressure of 100 Mpa determined
by computer modelling. Its infl uence extends to a special region of the phase space of cold
water – the Widom line, which corresponds to -45 °С at atmospheric pressure. On the Widom
line, an increase in entropy fl uctuations and water density are predicted. It is assumed that an
increase in the fl uctuation of entropy leads to an increase in the fl uctuation of the energy of
water molecules and an acceleration of the chemical transformations. However, deep overcooling
of bulk water is impossible due to its rapid crystallization below -37 °C.
Methods. Deep cooling is possible if water is in nanoscale pores. The most convenient medium
for this purpose is nanoporous silicate sorbents, in which a signifi cant volume of pore water has
parameters close to bulk metastable water. In an experiment using nanoporous moistened silicate
sorbents, it is possible to achieve supercooling of water to -60 °С.
In the performed experiment, thermometry of samples of silicate sorbents fi lled with hydrogen
gas was performed. A chemical reaction was checked for near the Widom line. We also investigated
the change in the physical properties of the medium using microwave spectroscopy.
Results. In the experiment, it was possible to observe reactions of the interaction of hydrogen
with the pore surface by the release of heat, as well as amplifi cation of microwave radiation at
a frequency of 34 GHz.
Conclusion. Chemical reactions involving water, according to the proposed mechanism, can
accelerate on the Widom line at temperatures from -45 °C to -53 °C and in the pressure range
from 0 to 100 MPa

 

 

 

 

 

REFERENCES
1. Palmer M. Y., Cordiner M. A., Nixon C. A., Charnley S. B., Teanby N. A., Kisiel, Z., Irwin P. G. J., Mumma
M. J. ALMA detection and astrobiological potential of vinyl cyanide on Titan. Science Advances, 2017,
v. 3(7), p. e1700022/6. DOI: https://doi.org/10.1126/sciadv.1700022
2. Goesmann F., Rosenbauer H., Bredehöft J.H., Cabane M., Ehrenfreund P., Gautier T., Giri C.,
Kröger H., Le Roy L., MacDermott A. J., McKenna-Lawlor S., Meierhenrich U. J., Caro G. M. M., Raulin F.,
Roll R., Steele A., Steininger H., Sternberg R., Szopa C., Thiemann W., Ulamec S. Organic compounds on
comet 67P/Churyumov–Gerasimenko revealed by COSAC mass spectrometry. Science, 2015, v. 349(6247),
p. aab0689-1/3. DOI: https://doi.org/10.1126/science.aab0689
3. Mumma M. J., Villanueva G. L., Novak R. E., Hewagama T., Bonev B. P., DiSanti M. A., Mandell A. M.,
Smith M. D. Strong release of methane on Mars in northern summer 2003. Science, 2009, v. 323(5917),
pp. 1041–1045. DOI: https://doi.org/10.1126/science.1165243
4. Korablev O.I. Study of the atmospheres of the terrestrial planets. Physics-Uspekhi, v. 48(6), p. 626–635. DOI: https://doi.org/10.1070/PU2005v048n06ABEH002443
5. Sergeev G. B., Batyuk V. A. Kriokhimiya [Cryochemistry]. Moscow, Khimiya Publ., 1978, 296 p. (in Russ.)
6. Shavlov A. V., Pisarev A. D., Ryabtseva A. A. Dinamika elektroprovodnosti plenok metallov vo l’du
pri ego strukturnom prevrashchenii. Rekombinatsionno-fononnyi mekhanizm uskoreniya korrozii [Electroconductivity dynamics of metal fi lms in ice under its structural transformation. The mechanism of corrosion acceleration]. Kriosfera Zemli, 2006, v. 10(3), p. 42–48. (in Russ.)
7. Shavlov A. V., Pisarev A. D., Ryabtseva A. A. Corrosion of metal fi lms in ice: The dynamics of the
conductivity of fi lms. Russian Journal of Physical Chemistry A, 2007, v. 81(7), p. 1030–1034. DOI: https://doi.org/10.1134/S0036024407070047
8. Velikotsky M. A. Korrozionnaya aktivnost’ gruntov v razlichnykh prirodnykh zonakh [Corrosive activity
of grounds in different natural zones]. Vestnik Moskovskogo Universiteta, Seriya 5: Geografi ya, 2010(1),
pp. 21–26. (in Russ.)
9. Lotnik S. V., Kazakov V. P. Nizkotemperaturnaya khemilyuminestsentsiya [Low temperature chemiluminescence]. Moscow, Nauka Publ., 1987, 176 p. (in Russ.).
10. Shabatina T. I., Sergeev G. B. Reaktsii pri nizkikh temperaturakh v khimii nanosistem [Low-temperature
reactions in the chemistry of nanosystems]. Uspekhi Khimii, 2003, v. 72(7), pp. 643–664. (in Russ.)
11. Chaplin M. Water Structure and Science. Available at: http://www.lsbu.ac.uk/water/chaplin.html
(accessed 23.09.2019)
12. Rosenfeld D., Woodley W.L. Deep convective clouds with sustained supercooled liquid water down
to –37.5 °C. Nature, 2000, v. 405(6785), pp. 440–442. DOI: https://doi.org/10.1038/35013030
13. Bordonskiy G. S., Orlov A. O. Signatures of the appearance of ice 0 in wetted nanoporous media at
electromagnetic measurements. JETP Letters, 2017, v. 105(8), pp. 492–496. DOI: https://doi.org/10.1134/S0021364017080021
14. Limmer D. T., Chandler D. The putative liquidliquid transition is a liquid-solid transition in atomistic
models of water. Journal of Chemical Physics, 2011, v. 135, pp. 134503/10. DOI: https://doi.org/10.1063/1.3643333
15. Mishima O. Volume of supercooled water under pressure and the liquid-liquid critical point. Journal of
Chemical Physics, 2010, v. 133(14), p. 144503/6. DOI: https://doi.org/10.1063/1.3487999
16. Handle P. H., Loerting T., Sciortino F. Supercooled and glassywater: Metastable liquid(s), amorphous
solid(s), and a no-man’s land. Proceedings of the National Academy of Sciences USA, 2017, v. 114(51),
pp. 13336–13344. DOI: https://doi.org/10.1073/pnas.1700103114
17. Speedy R. J., Angell C. A. Isothermal compressibility of supercooled water and evidence for a thermodynamic
singularity at –45 °C. The Journal of Chemical Physics, 1976, v. 65(3), pp. 851–858. DOI: https://doi.org/10.1073/pnas.170010311410.1063/1.433153
18. Anisimov M. A. Cold and supercooled water: A novel supercritical-fl uid solvent. Russian Journal of
Physical Chemistry B, 2012, v. 6(8), p. 861–867. DOI: https://doi.org/10.1073/pnas.170010311410.1134/S199079311208009X
19. Bordonskiy G. S., Gurulev A. A. Experimental proof of the existence of a Widom line based on peculiarities
of the behavior of hydrogen in nanoporous silicate at −45°C and atmospheric pressure. Technical
Physics Letters, 2017, v. 43(4), pp. 380–382. DOI: https://doi.org/10.1073/pnas.170010311410.1134/S1063785017040174
20. Bordonskiy G. S., Gurulev A. A., Krylov S. D., Tsyrenzhapov S. V. Using microwave spectroscopy to
study the state of supercooled water. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and
Interphases], 2019, v. 21(1), pp. 16–23. DOI: https://doi.org/10.17308/kcmf.2019.21/712 (in Russ.)
21. Castrillуn R. V. S., Giovambattista N., Aksay I. A., Debenedetti P. G. Structure and energetics of
thin fi lm water. Journal of Physical Chemistry C, 2011, v. 115(11), pp. 4624–4635. DOI: https://doi.org/10.1021/jp1083967
22. Menshikov L. I., Menshikov P. L., Fedichev P. O. Phenomenological Model of Hydrophobic and Hydrophilic
Interactions. Journal of Experimental and Theoretical Physics, 2017, v. 125(6), pp. 1173–1188.
DOI: https://doi.org/10.1134/S1063776117120056
23. Cerveny S., Mallamace F., Swenson J., Vogel M., Xu L. Confi ned water as model of supercooled water.
Chemical Reviews, 2016, v. 116(13), pp. 7608–7625. DOI: https://doi.org/10.1021/acs.chemrev.5b00609
24. Gorbatyi Yu. E., Bondarenko G. V. Sverkhkriticheskoe sostoyanie vody [Supercritical state of water].
Sverkhkriticheskie fl yuidy: Teoriya i praktika, 2007, v. 2(2), pp. 5–19. (in Russ.)
25. Patashinskii A. Z., Pokrovskii V. L. Fluktuatsionnaya teoriya fazovykh perekhodov [Fluctuation theory
of phase transitions]. Moscow, Nauka Publ., 1982, 381 p. (in Russ.)
26. Prigozhin I., Kondepudi D. Sovremennaya termodinamika. Ot teplovykh dvigatelei do dissipativnykh
struktur [Modern thermodynamics. From heat engines to dissipative structures.]. Moscow, Mir Publ., 2002,
461 p. (in Russ.)
27. Landau L. D., Lifshits E. M. Teoreticheskaya fi zika. Tom. 5. Statisticheskaya fi zika. Chast’ 1 [Theoretical
physics. Tom. 5. Statistical physics. Part 1]. Moscow, Fizmatlit Publ., 2002, 616 p. (in Russ.).
28. Sellberg J. A., Huang C., McQueen T. A., Loh N. D., Laksmono H., Schlesinger D., Sierra R. G.,
Nordlund D., Hampton C. Y., Starodub D., Depon-te D. P., Beye M., Chen C., Martin A. V., Barty A., Wikfeldt
K. T., Weiss T. M., Caronna C., Feldkamp J., Skinner L. B., Seibert M. M., Messerschmidt M., Williams
G. J., Boutet S., Pettersson L. G. M., Bogan M. J., Nilsson A. Ultrafast X-ray probing of water structure
below the homogeneous ice nucleation temperature. Nature, 2014, v. 510(7505), pp. 381–384. DOI: https://doi.org/10.1038/nature13266.
29. Goy C., Potenza M. A. C., Dedera S., Tomut M., Guillerm E., Kalinin A., Voss K.-O., Schottelius A.,
Petridis N., Prosvetov A., Tejeda G., Fernández J. M., Trautmann C., Caupin F., Glasmacher U., Grisenti R. E.
Shrinking of Rapidly Evaporating Water Microdroplets Reveals their Extreme Supercooling // Physical Review
Letters, 2018, v. 120(1), p. 015501/6. DOI: https://doi.org/10.1103/PhysRevLett.120.015501
30. Sergeev G. B. Nanokhimiya [Nanochemistry]. Moscow, Knizhnyi dom “Universitet” Publ., 2015, 384 p. (in Russ.)

Downloads

Download data is not yet available.

Author Biographies

Georgy S. Bordonsky, Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences, POB 1032, 16-a Nedorezova str., 672002 Chita, Russian Federation

Dr. Sci. (Phys.-Math.), Professor, Head Laboratory of Geophysics of Cryogenesis,
Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy
of Sciences, Chita, Russian Federation; e-mail: lgc255@mail.ru. 

Alexander A. Gurulev, Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences, POB 1032, 16-a Nedorezova str., 672002 Chita, Russian Federation

Cand. Sci. (Phys.-Math.), Senior Researcher, Associate Professor, Institute
of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences,
Chita, Russian Federation; e-mail: sansang@ mail.ru. 

Published
2019-12-19
How to Cite
Bordonsky, G. S., & Gurulev, A. A. (2019). Regarding Physical and Chemical Transformations with the Involvement of Water Near –45 °C. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(4), 478-489. https://doi.org/10.17308/kcmf.2019.21/2359
Section
Статьи