Studying of Viscoelastic Properties of Secondary Polymeric Materials in the Presence of Natural Plant Based Fillers

Keywords: polymeric composition,, rheology,, secondary polypropylene,, natural plant based fillers,, viscoelastic properties


The purpose of this study was to investigate the rheological characteristics of a polymer composition based on secondary polypropylene and natural plant based fillers. A sample of secondary polypropylene corresponding to the primary polypropylene of brand FF/3350 was used in this study. It is a crushed material from non-standard products produced by injection moulding in the technological production LLC “ZPI Alternative” (Russia, the Republic of Bashkortostan, Oktyabrsky). Industrial waste products, buckwheat husk, wheat chaff, rice husk and wood flour, were considered as fillers. The modelling of the processing of polymer materials was carried out in melt at the laboratory station (plastograph) “PlastographEC” (Brabender, Germany). The physical-mechanical properties of the polymer composites at break were determined by the tensile testing machine “ShimadzuAGS-X” (Shimadzu, Japan). Rheological measurements of the polymer composition melts was performed using a Haake Mars III rheometer.
The increase in the viscosity of the polypropylene melt occurring upon addition of fillers to the composition was revealed. The increase in filler content in the system increased not only the viscous properties, but also the elastic characteristics. It was established that as the polymer was filled with natural excipients, an increase in the storage modulus occurred, typical for systems showing elastic properties. Composites, characterized by high values of the storage modulus and correspondingly increased the values of Young’s modulus were formed, when rice husk and wood flour were used as fillers. It has been proven that the optimum filler content was a value corresponding to 10 mass.h.






  1. Aizinson I. L. Osnovnyye napravleniya razvitiya kompozitsionnykh termoplastichnykh materialov [The main directions of development of composite thermoplastic materials]. Moscow: Khimiya Publ.; 1988. 48 p. (In Russ.)
  2. Richardson M. Promyshlennyye polimernyye kompozitsionnyye materialy [Industrial Polymer Composite Materials]. Moscow: Khimiya Publ.; 1980. 472 p. (In Russ.)
  3. Berlin Al. Al., Wolfson S. A., Oshmyan V. G., Enikolopyan N. S. Printsipy sozdaniya kompozitsionnykh materialov [The principles of creating composite materials]. Moscow: Khimiya Publ.; 1990. 238 p. (In Russ.)
  4. Cherkashin A. N., Rassokha A. N. Polymeric compositions based on secondary polypropylene. Actual scientifi c research in the modern world. 2018;33(1–8): 125–131. Available at: (In Russ.)
  5. Tveritnikova I. S., Kirsh I. A., Pomogova D. A., Bannikova O. A., Beznaeva O. V., Romanova V. A. Development of multilayer packaging material based on polyolefi n mixtures modifi ed with a copolymer of ethylene with propylene for food storage. Technique and technology of food production. 2019;49(1): 135–143. Available at: (In Russ.)
  6. Kakhramanov N. T., Mustafayeva F. A., Allakhverdiyeva Kh. V. Technological features of extrusion of composite materials based on mixtures of high and low density polyethylene and mineral fi llers. Azerbaijan Chemical Journal. 2019;4: 11–16. DOI:
  7. Shkuro A. E., Glukhikh V. V., Krivonogov P. S., Stoyanov O. V. Fillers of agricultural origin for woodpolymer composites (review). Bulletin of Kazan Technological University. 2014;17(21): 160–163. Available at: (In Russ.)
  8. Katz G. S., Milevsky D. V. (eds.) Napolniteli dlya polimernykh kompozitsionnykh materialov [Fillers for polymer composite materials]. Moscow: Khimiya Publ.; 1981. 736 p. (In Russ.)
  9. Alimov I. M., Magrupov F. A., Ilhamov G. U. The effect of the fractional composition of wood particles on the physicomechanical properties of wood-polymer materials based on secondary polyolefi ns. Woodworking industry. 2019;1: 18–25. Available at: http://dop1952. ru/catalogue-statue_id-298.html (In Russ.)
  10. Dobah Y., Zampetakis I., Ward C., Scarpa F. Thermoformability characterization of fl ax reinforced polypropylene composite materials. Composites Part B: Engineering. 2020;184(1): 107727. DOI:
  11. Prachayawarakorn J., Pomdage W. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low density polyethylene composites reinforced by cotton fi bers. Materials and Design. 2014;61: 264–269. DOI:
  12. Ibrahim H., Farag M., Megahed H., Mehanny S. Characteristics of starch-based biodegradable composites reinforced with date palm and fl ax fi bers. Carbohyd polym. 2014; 101(1): 11–19. DOI:
  13. Cavdar A. D., Mengeloрlu F., Karakus K. Effect of boric acid and borax on mechanical, fi re and thermal properties of wood fl our fi lled high density polyethylene composites. Measurement: Journal of the International Measurement Confederation. 2015; 60: 6–12. DOI: /j.measurement.2014.09.0.078
  14. Faruk O., Bledzki AK, Fink H. Biocomposites reinforced with natural fi bers: 2000-2010. Prog. Polym. Sci. 2012;37(11): 1552–1596. DOI:
  15. Boudenne A., Ibos L., Candau Y., Thomas S. Handbook of multiphase polymer systems. Chichester: John Wiley and Sons Ltd.; 2011. 1034 p. DOI:
  16. Mohanty A. K., Misra M., Drzal L. T. Natural fi bers, biopolymers, and biocomposites. USA: Taylor &Francis Group; 2005. 896 p. DOI:
  17. Faruk O., Sain M. Biofi ber reinforcements in composite materials. Cambridge: Woodhead Publishing Ltd.; 2015. 772 p. DOI:
  18. Jose J., Nag A., Nando G. B. Environmental aging studies of impact modifi ed waste polypropylene. Iran Polym. J. 2014;23(8): 619–636. DOI: / s13726-014-0256-5
  19. Utracki L. A. Polymer blends handbook. Dordrecht: Kluwer Academic Publishers; 2002. DOI:
  20. Wang Y.-Z., Yang K.-K., Wang X.-L., Zhou Q., Zheng C.-Y., Chen Z.-F. Agricultural application and environmental degradation of photo-biodegradable polyethylene mulching films. J. Polym. Environ. 2004;12: 7–10. DOI:
  21. Koutny M., Sancelme M., Dabin C., Pichon N., Delort A.-M., Lemaire J. Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym. Degrad. Stab. 2006;91 (7): 1495–1503. DOI:
  22. De La Orden M. U., Montes J. M., Martínez Urreaga J., Bento A., Ribeiro M. R., Pérez E., Cerrada M. L. Thermo and photo-oxidation of functionalized metallocene high density polyethylene: Effect of hydrophilic groups. Polym. Degrad. Stabil. 2015;11(10): 78–88. DOI: stab.2014.10.10.023
  23. Yusak N. A. M., Mohamed R., Ramli M. A. Mechanical analyses of polyethylene/polypropylene blend with photodegradant. J. Appl. Sci. Agric. 2014;9(11): 300-305.
  24. Lipatov Yu. S. Fizicheskaya khimiya napolnennykh polimerov [Physical chemistry of fi lled polymers]. Moscow: Khimiya Publ.; 1977. 304 p. (In Russ.)
  25. Schramm G. A practical approach to rheology and rheometry. 2nd edition. Federal Republic of Germany, Karlsruhe: Gebrueder HAAKE GmbH; 2000. 291 p.
  26. Sokolov A. V., Roedolf D. Introduction to the practical rheology of polymers. Plastics. 2018;(5–6): 31–34. Available at: (In Russ.)
  27. Lazdin R. Y., Zakharov V. P., Shurshina A. S., Kulish E. I. Assessment of rheological behavior of secondary polymeric raw materials in the conditions corresponding to processing of polymers by method of extrusion and injection molding. Letters on Materials. 2019;9(1): 70–74. DOI:
  28. Bledzki A. K., Mamuna A. A., Volk J. Barley husk and coconut shell reinforced polypropylene composites: The effect of fiber physical, chemical and surface properties. Composites Science and Technology. 2010;70(5): 840–846. DOI:
  29. Nourbakhsh A., Ashori A., Tabrizi A. K. Characterization and biodegradability of polypropylene composites using agricultural residues and waste fi sh. Composites Part B: Engineering. 2014;56: 279–283. DOI:
  30. Ashori A., Nourbakhsh A. Mechanical behavior of agro-residue-reinforced polypropylene composites. Journal of Applied Polymer Science. 2008;111(5): 2616–2620. DOI:
  31. Vurasko A. V., Minakova A. R., Gulemina N. N., Driker B. M. Physico-chemical properties of cellulose obtained by the oxidative-organosolvent method from plant materials. In: Forests of Russia in the XXI century: Materials of the fi rst international scientifi c and practical Internet conference, 30 June 2009. St. Petersburg: St. Petersburg State Forestry University Publ.; 2009. p. 126–130. (In Russ.)


Download data is not yet available.

Author Biographies

Rinat M. Akhmetkhanov, Bashkir State University, 32 Zaki Validi str., Ufa, 450076 Russian Federation

DSc in Chemistry, Associate Professor, Dean, Bashkir State University, Ufa, Russian Federation; e-mail:

Ainur R. Sadritdinov,, Bashkir State University, 32 Zaki Validi str., Ufa, 450076 Russian Federation

PhD student, Bashkir State University, Ufa, Russian Federation; e-mail:

Vadim P. Zakharov, Bashkir State University, 32 Zaki Validi str., Ufa, 450076 Russian Federation

DSc in Chemistry, Professor, Vice-Rector for Research and Innovation, Bashkir State University, Ufa, Russian Federation; e-mail:

Angela S. Shurshina, Bashkir State University, 32 Zaki Validi str., Ufa, 450076 Russian Federation

PhD in Chemistry, Associate Professor, Bashkir State University, Ufa, Russian Federation; e-mail:

Elena I. Kulish, Bashkir State University, 32 Zaki Validi str., Ufa, 450076 Russian Federation

DSc in Chemistry, Professor, Head of Department, Bashkir State University, Ufa, Russian Federation; e-mail:

How to Cite
Akhmetkhanov, R. M., Sadritdinov, A. R., Zakharov, V. P., Shurshina, A. S., & Kulish, E. I. (2020). Studying of Viscoelastic Properties of Secondary Polymeric Materials in the Presence of Natural Plant Based Fillers. Condensed Matter and Interphases, 22(1).