Микроконусные анодно-оксидные пленки на спеченных порошках ниобия

Keywords: sintered niobium powders, anodic oxide fi lms, microcones, crystalline, nanostructured. Funding: The study was supported by the Flagship University Development Program of the FSFEI HE Petrozavodsk State University for 2017–2021.

Abstract

Information on the anodizing of sintered powders (SP) of niobium is limited by the study of the growth of barrier-type fi lms. The formation of a nanostructured anodic oxide fi lm (AOF) on the surface of powder particles should lead to a noticeable increase in the specifi c surface of the sample and an increase in the chemical activity of the m aterial. In view of the above, the study of the anodic nanostructuring of sintered niobium powders is of high importance and offers opportunities for creating new functional nanomaterials. This paper was aimed at the study of the anodizing process of sintered Nb powders in a fl uorine-containing aqueous electrolyte 1М Н2SO4 + 1% HF. The objects of the study were samples of sintered Nb powder with a specifi c area of Sspec = 800 cm2/g. Anodizing was conducted
in a 1М Н2SO4 + 1% HF electrolyte with various values of current density ja. Surface morphology before and after anodising was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). X-ray diffractometry was used to study the phase composition. Kinetics of the growth of anodic oxide fi lms (АОF) on the surface of sintered Nb powders SP in galvanostatic mode was studied. The optimal conditions were defi ned for obtaining Ua(t) voltage-time transients, characteristic of the formation of self-organised porous anodic oxide fi lms (AOF). It was established that anodizing at current density values ja = 0.10–0.20 mA/cm2 leads to the formation of a Nb2O5 oxide fi lm on the surface of sintered
powders SP with a regular-porous layer adjacent to metal and a crystalline microcone layer over it. The microcones (up to 0.6 μm high, up to 2 μm in effective base diameter) consist of branched fi brils with a diameter of ~18–30 nm, connected on top.
It was established for the fi rst time that anodizing of sintered niobium powders in a fl uorine-containing aqueous electrolyte leads to the formation of an oxide fi lm with an upper crystalline microcone layer on the surface of powder microparticles. The suggested method for surface processing can be used for the development of biocompatible powder implants.

 

 

 

 

 

 

REFERENCES 

  1. Odynets L. L., Orlov V. M. Anodnye oksidnye plenki [Anodic oxide fi lms]. Leningrad: Nauka; 1990. 200 p. (in Russ.)
  2. Yakovleva N. M., Kokatev A. N., Chupakhina E. A., Stepanova K. V., Yakovlev A. N., Vasil’ev S. G., Shul’ga A. M. Surface nanostructuring of metals and alloys. Part 1. Nanostructured anodic oxide fi lms on Al and Al alloys. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2015;17(2): 137–152. Available at: https://journals.vsu.ru/kcmf/article/view/56 (In Russ., abstract in Eng.)
  3. Yakovleva N. M., Kokatev A. N., Stepanova K. V., Yakovlev A. N., Chupakhina E. A., Shul’ga A. M., Vasil’ev S. G. Surface nanostructuring of metals and alloys. Part 2. Nanostructured anodic oxide fi lms on Ti and Ti alloys. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2016;18(1): 6–27. Available at: https://journals.vsu.ru/kcmf/article/view/104 (In Russ., abstract in Eng.)
  4. Sieber I., Hildebrand H., Friedrich A., Schmuki P. Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications. 2005;7: 97–100. DOI: https://doi.org/10.1016/j.elecom.2004.11.012
  5. Choi J., Lim J. H., Lee S. C., Chang J. H., Kim K. J., Cho M. A. Porous niobium oxide fi lms prepared by anodization in HF/H3PO4. Electrochimica Acta. 2006;51: 5502–5507. DOI: https://doi.org/10.1016/j.electacta.2006.02.024
  6. Tzvetkov B., Bojinov M., Girginov A., Pébère N. An electrochemical and surface analytical study of the formation of nanoporous oxides on niobium. Electrochimica Acta. 2007;52: 7724–7731. DOI: https://doi.org/10.1016/j.electacta.2006.12.034
  7. Tzvetkov B., Bojinov M., Girginov A. Nanoporous oxide formation by anodic oxidation of Nb in sulphate– fl uoride electrolytes. J Solid State Electrochem. 2009;13: 1215–1226. DOI: https://doi.org/10.1007/s10008-008-0651-y
  8. Yoo J. E., Choi J. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface. Electrochimica Acta. 2010;55: 5142–5147. DOI: https://doi.org/10.1016/j.electacta.2010.04.021
  9. Wei W., Lee K., Shaw S., Schmuki P. Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. ChemComm. 2012;48: 4244–4246. DOI: https://doi.org/10.1039/C2CC31007D
  10. Kim H.-K., Yoo J. E., Park J., Seo E. W., Choi J. Formation of Niobium Oxide Film with Duplex Layers by Galvanostatic Anodization. Bull. Korean Chem. Soc. 2012;33(8): 2675–2678. http://dx.doi.org/10.5012/bkcs.2012.33.8.2675
  11. Yoo J. E., Park J., Cha G., Choi J. Micro-length anodic porous niobium oxide for lithium-ion thin fi lm battery applications. Thin Solid Films. 2013;531: 583–587.
  12. Shul’ga A. M., Yakovleva N. M., Kokatev A. N., Stepanova K. V., Khanina E. Ya. Anodic surface nanostructuring of tantalum and niobium. Trudy Kol’skogo nauchnogo tsentra RAN. Khimiya i materialovedenie [Transactions of the Kola Science Centre of the Russian Academy of Science. Chemistry and material science]. 2015;5(31): 498 – 500. (In Russ.)
  13. Minagar S., Berndt C. C., Wen C. Fabrication and сharacterization of nanoporous niobia, and nanotubular tantala, titania and zirconia via anodization. J. Funct. Biomater., 2015;6: 153–170. DOI: https://doi.org/10.3390/jfb6020153
  14. Ryshchenko I. M., Lyashok I. V., Gomozov V. P., Vodolazhchenko S. A., Deribo S. G. Formation of nanostructures on the basis of porous anodic niobium oxide. Functional materials. 2019;26(4): 729–733. DOI: https://doi.org/10.15407/fm26.04.729
  15. Alias N., Rosli S. A., Hussain Z., Kian T. W., Matsuda A., Lockman Z. Anodised porous Nb2O5 for photoreduction of Cr(VI). Materials Today: Proceedings. 2019;17: 1033–1039. DOI: https://doi.org/10.1016/j.matpr.2019.06.505
  16. Yao D. D., Rani R. A., O’Mullane A. P., Kalantar-Zadeh K., Ou J. Z. High performance electrochromic devices based on anodized nanoporous Nb2O5. J. Phys. Chem. C. 2014;118(1): 476-481. DOI: https://doi.org/10.1021/jp410097y
  17. Rani R. A., Zoolfakar A. S., O’Mullane A. P., Austina M. W., Kalantar-Zadeh K. Thin fi lms and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J. Mater. Chem. A. 2014;2: 15683–15703. DOI: https://doi.org/10.1039/c4ta02561j
  18. Karlinsey R. L. Preparation of self-organized niobium oxide microstructures via potentiostatic anodization. Electrochemistry Communications. 2005;7: 1190–1194. DOI: https://doi.org/10.1016/j.elecom.2005.08.027
  19. Karlinsey R. L. Self-assembled Nb2O5 microcones with tailored crystallinity. J. Mater. Sci. 2006;41: 5017–5020. DOI: https://doi.org/10.1007/s10853-006-0135-3
  20. Zhao J., Wang X., Xu R., Mi Y., Li Y. Preparation and growth mechanism of niobium oxide microcones by the anodization method. Electrochem. Solid-State Lett. 2007;10(4): 31–33. DOI: DOI: https://doi.org/10.1149/1.2458528
  21. Oikawa Y., Minami T., Mayama H., Tsujii K., Fushimi K., Aoki Y., Skeldon P., Thompson G. E., Habazaki H. Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability. Acta Materialia. 2009;57: 3941–3946. DOI: https://doi.org/10.1016/j.actamat.2009.04.050
  22. Yang, S., Aoki Y., Habazaki H. Effect of electrolyte temperature on the formation of selforganized anodic niobium oxide microcones in hot phosphate–glycerol electrolyte. Applied Surface Science. 2011;57: 8190–8195. DOI https://doi.org/10.1016/j.apsusc.2011.01.041
  23. Yang S., Habazaki H., Fujii T., Aoki Y., Skeldon P., Thompson G. E. Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate–glycerol electrolytes. Electrochimica Acta. 2011;56: 7446–7453. DOI: https://doi.org/10.1016/j.electacta.2011.07.005
  24. Jung E., Chang J. H., Jeong B.-Y. Fabrication of niobium oxide nanorods by the anodization method. Journal of the Korean Electrochemical Society. 2011;14(4): 196–200. DOI: https://doi.org/10.5229/JKES.2011.14.4.196
  25. Jeong B.-Y., Jung E. H. Micro-mountain and nano-forest pancake structure of Nb2O5 with surface nanowires for dye-sensitized solar cells. Met. Mater. Int. 2013;19(3): 617–622. DOI: https://doi.org/10.1007/s12540-013-3035-5
  26. Skatkov, L., Lyashok L., Gomozov V., Tokareva I., Bayrachniy B. Аnodic formation of nanoporous crystalline niobium oxide. J. Electrochem. Sci. Eng. 2014;4(2): 75–83. DOI: https://doi.org/10.5599/jese.2014.0050
  27. Jeong B.-Y., Junga E.-H., Kim J.-H. Fabrication of superhydrophobic niobium pentoxide thin fi lms by anodization. Applied Surface Science. 2014;307: 28–32. DOI: https://doi.org/10.1016/j.apsusc.2014.03.111
  28. Shaheen B. S., Davenport T. C., Salem H. G., Haile S. M., Allam N. K. Rapid and controlled electrochemical synthesis of crystalline niobium oxide microcones. MRS Communications. 2015;5(03): 495–501. DOI https://doi.org/10.1557/mrc.2015.43
  29. Bianchin A. C. V., Maldaner G. R., Fuhr L. T., Beltrami L. V. R., Malfatti C. F., Rieder E. S., Kunst S. R., Oliveira C. T. A model for the formation of niobium structures by anodization. Materials Research 2017;20(4): 1010–1023. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2016-0392
  30. Wally Z. J., van Grunsven W., Claeyssens F., Goodall R., Reilly G. C. Porous titanium for dental implant applications. Metals. 2015;5: 1902–1920; DOI: https://doi.org/10.3390/met504190
  31. Kulkarni M., Mazare A., Gongadze E., Perutkova Š., Kralj-Iglic V., Miloљev I., Schmuki P., Iglic А., Mozetic М. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26: 1−18. DOI https://doi.org/10.1088/0957-4484/26/6/062002
  32. Kokatev A. N., Stepanova K. V., Yakovleva N. M., Tolstik V. E., Shelukhina A. I., Shulga A. M. Selforganisation of a bioactive nanostructured oxide layer on the surface of sintered titanium sponge powder subjected to electrochemical anodisation. Technical Physics. 2018;88(9): 1377–1383. DOI: https://doi.org/10.21883/JTF.2018.09.46424.25-18
  33. Stepanova K. V., Yakovleva N. M., Kokatev A. N., Pettersson H. Nanoporistye anodno-oksidnye plenki na poroshkovom splave Ti-Al [Nanoporous anodic oxide fi lms on Ti-Al powder alloy]. Uch.zap. PetrGU. Seriya Estestvennye i tekhnicheskie nauki. 2015;147(2): 81–86. Available at: http://uchzap.petrsu.ru/files/n147.pdf (In Russ., abstract in Eng.)
  34. Stepanova К. V., Yakovleva N. M., Kokatev А. N., Pettersson H. Infl uence of annealing on the structure of nanoporous oxide fi lms on the surface of titanium–aluminum powder alloy. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2016;10(5): 933–941. DOI: https://doi.org/10.7868/s0207352816090134 (In Russ.)
  35. Stepanova К. V., Yakovleva N. M., Kokatev А. N., Pettersson H. The structure and properties of nanoporous anodic oxide fi lms on titanium aluminide. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(1): 135–145. DOI: https://doi.org/10.17308/kcmf.2019.21/724
  36. GOST 26252-84. Poroshok niobievyy. Tekhnicheskie usloviya. Moscow: Izdatel’stvo standartov; 1990. 47 p. (In Russ.)
  37. Shul’ga A. M., Yakovleva N. M., Kokatev A. N., Pettersson H. Nanostrukturirovannye anodnooksidnye plenki na spechennykh poroshkakh niobiya [Nanostructured anodic oxide films on sintered niobium powders]. In: Sbornik nauchnykh statey “Nanostruktury v kondensirovannykh sredakh”. Minsk: Institut teplo- i massoobmena imeni A. V. Lykova NAN Belarusi; 2016. pp. 366–370. (In Russ.)
  38. Yakovleva N. M., Stepanova K. V., Kokatev A. N., Shul’ga A. M. Chupakhina E. A., Vasil’ev S. G. Electrochemical anodising of sintered powders of metals and alloys. Trudy Kol’skogo nauchnogo tsentra RAN. Khimiya i materialovedenie [Transactions of the Kola science centre of the Russian Academy of Science] Iss. 2. P. 1. The third all-Russian conference with international participation dedicated to the 60th anniversary of the Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials of the Russian Academy of Sciences Kola Science Centre “Research and development in chemistry and technology of functional materials”. Apatity: FPFIS FRC “KSC of RAS” Publ.; 2018;1(9): 479 – 484. (in Russ.)
  39. Modul’ obrabotki izobrazheniy Image Analysis P9: spravochnoe rukovodstvo. Moscow: NT-MDT; 2014. 482 p. (In Russ.)
  40. Habazaki H., OgasawaraT., Konno H., Shimizu K., Nagata S., Skeldon P., Thompson G. E. Field crystallization of anodic niobia. Corrosion Science. 2007;49(2): 580–593. DOI: https://doi.org/10.1016/j.corsci.2006.06.005
  41. Habazaki H., Yamasaki M., Ogasawara T., Fushimi K., Konno H., Shimizu K., Izumi T., Matsuoka R., Skeldon P., Thompson G. E. Thermal degradation of anodic niobia on niobium and oxygen-containing niobium. Thin Solid Films. 2008;516(6): 991–998. DOI: https://doi.org/10.1016/j.tsf.2007.06.127

Downloads

Download data is not yet available.

Author Biographies

Natalia M. Yakovleva, аPetrozavodsk State University, 33 Lenina prospect, Petrozavodsk 185910, Republic of Karelia, Russian Federa

DSc in in Physics and Mathematics, Full Professor, Petrozavodsk State University,
Petrozavodsk, Republic of Karelia, Russian Federation; e-mail: nmyakov@petrsu.ru, nmyakov@gmail.com.

Alisa M. Shul’ga, Petrozavodsk State University, 33 Lenina prospect, Petrozavodsk 185910, Republic of Karelia, Russian Federation

Engineer, Petrozavodsk State University, Petrozavodsk, Republic of Karelia, Russian
Fede ration; e-mail: shulga.alisa@gmail.com.

Kristina V. Stepanova, Petrozavodsk State University, 33 Lenina prospect, Petrozavodsk 185910, Republic of Karelia, Russian Federation

PhD in Technology, Engineer, Petrozavodsk State University, Petrozavodsk, Republic of Karelia, Russian Federation; e-mail: lady. cristin4ik@yandex.ru. 

Alexander N. Kokatev, Petrozavodsk State University, 33 Lenina prospect, Petrozavodsk 185910, Republic of Karelia, Russian Federation

PhD in Technology, Engineer, Petrozavodsk State University, Petrozavodsk, Republic
of Karelia, Russian Federation; e-mail: nelanoksid@bk.ru.

Vladimir S. Rudnev, Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159 prospect 100-letya Vladivostoka, Vladivostok 690022, Russian Federation

DSc in Chemistry, Institute of Chemistry, Far-Eastern Branch of the Russian Academy
of Sciences, Vladivostok, Russian Federation; e-mail: rudnevvs@ich.dvo.ru.

Irina V. Lukiyanchuk, Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159 prospect 100-letya Vladivostoka, Vladivostok 690022, Russian Federation

PhD in Chemistry, Senior Researcher, Institute of Chemistry, Far-Eastern Branch
of the Russian Academy of Sciences, Vladivostok, Russian Federation; e-mail: lukiyanchuk@ich.dvo.ru.

Valeriy G. Kuryavyi, Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159 prospect 100-letya Vladivostoka, Vladivostok 690022, Russian Federation

PhD in Chemistry, Senior Researcher, Institute of Chemistry, Far-Eastern Branch
of the Russian Academy of Sciences, Vladivostok, Russian Federation; e-mail: kvg@dvo.ru.

Published
2020-03-20
How to Cite
Yakovleva, N. M., Shul’ga, A. M., Stepanova, K. V., Kokatev, A. N., Rudnev, V. S., Lukiyanchuk, I. V., & Kuryavyi, V. G. (2020). Микроконусные анодно-оксидные пленки на спеченных порошках ниобия. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(1). https://doi.org/10.17308/kcmf.2020.22/2536
Section
Статьи