Voltamperometry of a Kinetically Irreversible Electrochemical Process on a Rough Electrode
Abstract
We investigated the role of the effect of morphological inhomogeneity of the electrode surface in the voltammetric response of the irreversible electrochemical process in the mixed-kinetic mode. An algorithm was developed using the Comsol Multiphysics computer package for the numerical simulation of the electrode reaction, including successive stages of irreversible charge transfer and diffusion mass-transfer, using the fi nite element method. By numerical solution of the diffusion-kinetic problem, polarization curves of the irreversible electrochemical process on electrodes with a rough surface formed by the irregularities of various geometric types (sinusoidal surface, surface with protrusions, trapezoidal surface,
sawtooth surface, and “random” surface) were obtained. We established the usage conditions for the voltammetric method of studying the kinetics of electrochemical processes under which the roughness of the electrode should be considered. It was found that at relatively high potential scan rates, the voltammetric maximum on the polarization curve was formed under conditions of a very small thickness of the diffusion layer, repeating the profi le of the rough surface, therefore the peak current strength was proportional to the roughness factor. If the scanning rate was relatively low, then by the time
the peak on the voltammogram was reached, the diffusion front was completely smoothed out, and the surface roughness of the electrode no longer affected the maximum current. At the same time, the shape of the irregularities responsible for the roughness did not signifi cantly affect the voltammetric response of the irreversible electrochemical process.
REFERENCES
1. Compton R. G., Banks Craig E. Understanding Voltammetry. World Scientific; 2007. 371 p. DOI:
https://doi.org/10.1142/6430
2. Vvedenskii A. V., Kozaderov O. A. Linear voltammetry of anodic selective dissolution of
homogeneous metallic alloys. In: Saito Y., Kikuchi T. (eds.) Voltammetry: theory, types and applications. New York: Nova Science Publishers, Inc.; 2014. 349 p.
3. Bard A. J., Faulkner L. R. Electrochemical methods. Fundamentals and applications. 2nd edition. New York: Wiley; 2000. 856 p.
4. Galjus Z. Teoreticheskie osnovy jelektrohimicheskogo analiza [Theoretical foundations of electrochemical
analysis]. Moscow: Mir Publ.; 1974. 552 p. (In Russ.)
5. Matsuda H., Ayabe J. Z. Zur theorie der Randles-Sevcikschen kathodenstrahl-polarographie. Z.
Electrochem. 1955;59(6): 494–503. Available at: DOI: https://doi.org/10.1002/bbpc.19550590605
6. Menshykau D., Streeter I., Compton R. G. Infl uence of electrode roughness on cyclic voltammetry.
J. Phys. Chem. C. 2008;112(37): 14428–14438. DOI: https://doi.org/10.1021/jp8047423
7. Menshykau D., Compton R. G. Influence of electrode roughness on stripping voltammetry :
mathematical modeling and numerical simulation. J. Phys. Chem. C. 2009;113(35): 15602–15620. DOI:
https://doi.org/10.1021/jp904187t
8. Kozaderov O. A., Vvedenskij A. V. Vol’tamperometrija selektivnogo rastvorenija binarnogo
gomogennogo metallicheskogo splava v uslovijah tverdofaznogo massoperenosa [Voltammetry of
selective dissolution of a binary homogeneous metal alloy under conditions of solid-phase mass transfer].Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2011;13(4): 452–459. Available at:http://www.kcmf.vsu.ru/resources/t_13_4_2011_010.pdf (In Russ.)
9. Kozaderov O. A., Lozovskij V. V., Vvedenskij A. V. Chronovoltammetry of the anodic dissolution of Ag-Au
alloys in a nitrate medium. Protection of Metals. 2008;44(4): 333–342. DOI: https://doi.org/10.1134/S0033173208040036
10. Kozaderov O. A., Vvedenskij A. V. Voltammetry of selective dissolution of Ag-Au alloys under
conditions of solid phase liquid phase mass transfer. Protection of Metals and Physical Chemistry of Surfaces. 2013;49(6): 724–733. DOI: https://doi.org/10.7868/S0044185613060090
11. Arun Prasad M., Sangaranarayanan M. V. Formulation of a simple analytical expression for
irreversible electron transfer processes in linear sweep voltammetry and its experimental verification.
Electrochimica Acta. 2004;49(16): 2569–2579. DOI: https://doi.org/10.1016/j.electacta.2004.01.028
12. Singh T., Dutt J. Linear sweep voltammetry at the tubular graphite electrode: Part II. Totally
irreversible processes. J. of Electroanalytical Chem. and Interfacial Electrochemistr. 1985;196(1): 35–42. DOI:
https://doi.org/10.1016/0022-0728(85)85078-6
13. Jin W., Cui H., Zhu L., Wang Sh. On the theory of the integer and half-integer integral and derivative
linear potential sweep voltammetry for a totally irreversible interfacial reaction. J. of Electroanalytical
Chem. and Interfacial Electrochemistr. 1991;309(1–2): 37–47. DOI: https://doi.org/10.1016/0022-0728(91)87002-L
14. Aoki K., Tokuda K., Matsuda H. Theory of linear sweep voltammetry with fi nite diffusion space: Part II.
Totally irreversible and quasi-reversible cases. J. of Electroanalytical Chem. and Interfacial Electrochemistr.
1984;160(1–2): 33–45. DOI: https://doi.org/10.1016/S0022-0728(84)80113-8
15. Andricacos P. C., Cheh H. Y. The application of linear sweep voltammetry to a rotating disk electrode
for a first-order irreversible reaction. J. of Electroanalytical Chem. and Interfacial Electrochemistry.
1981;124(1–2): 95–101. DOI: https://doi.org/10.1016/S0022-0728(81)80287-2
16. Kohler H., Piron D. L., Belanger G. A linear sweep voltammetry theory for irreversible electrode
reactions with an order of one or higher: I. Mathematical formulation. J. of the Electrochemical Society.
1987;134(1): 120–126. DOI:https://doi.org/10.1149/1.2100388
17. Nahir T. M., Clark R. A. Bowden E. F. Linearsweep voltammetry of irreversible electron transfer in
surface-confi ned species using the Marcus theory. Anal. Chem. 1994;66(15): 2595–2598. DOI: https://doi.org/10.1021/ac00087a027
18. Truhan S. N., Derevshhikov V. S. Komp’juternoe modelirovanie processov i javlenij fizicheskoj himii
[Computer modeling of processes and phenomena of physical chemistry]. Novosibirsk: NSU Publ.; 2012.
75 p. (In Russ.)
19. Krasnikov G. E., Nagornov O. V., Starostin N. V. Modelirovanie fi zicheskih processov s ispol’zovaniem
paketa Comsol Multiphysics [Modeling of physical processes using the Comsol Multiphysics package].
Moscow: NRNU MEPhI Publ.; 2012. 184 p. (In Russ.)
20. Damaskin B.B., Petrij O.A., Cirlina G.A. Jelektrohimija: Uchebnik dlja vuzov [Electrochemistry:
a textbook for universities]. Moscow: Khimiya Publ.; 2001. 624 p. (In. Russ.)
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.