Spectral analysis of heat fl uctuations in KI transient premelting states
Abstract
Nonequlibrium fl uctuations, which are of nonlinear Brownian noise by type, occur in different systems near the phase transition points. As a rule, such nonequlibrium processes are the precursors of materials fracture and degradation. Observation of the transient premelting states near the melting point Tm and anomalous temperature behaviour of some physical parameters indicate changes in the structure and properties of a solid body as it approaches the melting point. As a rule, the changes are nonlinearly dependent on heating rate. It is necessary to calculate the index of the shape of the fl uctuation spectrum to characterise the state of complex dynamic systems. The index has information about the processes
in the system and the interrelations between different subsystems. Changes in the spectral characteristics of fl uctuation processes may indicate the state of the system and also help us to develop the meth ods to predict its evolution. The aim of this study is parametrisation of heat fl uctuations in the premelting states of KI ionic crystals and the study of the dependence of spectral parameters on kinetic modes of heating.
Wavelet-analysis has been used to determine the spectral characteristics of thermal fl uctuations in the KI premelting states in various kinetic modes. Wavelet-analysis combines the capabilities of classical spectral Fourier-analysis with the capabilities of a local study of various fl uctuation and oscillating processes in frequency and time domains. It makes it possible to determine the features of the processes at various times and scales of the evolution of the system.
Wavelet transform of oscillating processes allowed obtaining information about the dynamics of the development of complex systems under various nonequilibrium conditions. It was shown that heat fl uctuations in the KI premelting states are nonlinear Brownian noise with the coeffi cient of selfsimilarity of b ~ 2. Using the Hurst parameter, the type of fl uctuation process was defi ned. It was shown that in dynamic heating modes (v = 5, 10 K/min) the fl uctuation process is characterised by oscillating nature of evolution of the “stable-unstable” type (the property of antipersistency). In quasistatic modes (v =
1 K/min) the initial tendency of the evolution of the system is maintained (the property of persistence).
REFERENCES
1. Bityutskaya L. A., Selezvev G. D. Thermal flicker noise in dissipative processes of pre-melting of
crystalline materials. Physics of the Solid State. 1999;41(9): 1537–1540. DOI: https://doi.org/10.1134/1.1131018
2. Gerashchenko O. V., Matveev V. A., Pleshanov N. K., Bairamukov V. Yu. Electrical resistance and
1/f fl uctuations in thin titanium fi lms. Physics of the Solid State. 2014;56(7): 1443–1448. DOI: https://doi.org/10.1134/S1063783414070130
3. Klochikhin V. L., Lakeev S. G., Timashev S. F. Flicker-noise in chemical kinetics (Microscopic
kinetics and fluctuations in stationary chemical processes). Russian Journal of Physical Chemistry A.
1999;73(2): 172–178. Available at: https://elibrary.ru/item.asp?id=13313799
4. Pavlov A. N., Hramov A. E., Koronovskii A. A., Sitnikova E. Yu, Makarov V. A., Ovchinnikov A. A.
Wavelet analysis in neurodynamics. Phys. Usp. 2012;55: 845–875. DOI: https://doi.org/10.3367/UFNe.0182.201209a.0905
5. Kosopov G. D., Bardyug D. Yu. Analysis ofice premelting in water-containing disperse media
Technical Physics Letters. 2007;33(7): 622–624. DOI: https://doi.org/10.1134/S1063785007070243
6. Shibkov A. A. Gasanov M. F., Zolotov A. E., Zheltov M. A., Denisov A. A., Koltsov R. Yu., Kochegarov
S. S. Elektrokhimicheskaya emissiya pri deformirovanii i razrushenii alyuminii-magnievogo splava v vodnoi srede [Electrochemical emission at deformation and fracture of aluminium-magnesium alloy in water medium]. Technical Physics. 2020;90(1): 85–93. DOI: https://doi.org/10.21883/JTF.2020.01.48666.151-19 (In Russ.)
7. Feychuk P., Bityutskaya L., Mashkina E., Shcherbak L. Heat processes oscillations in the molten
and solid CdTe. J. Cryst. Growth. 2005;275 (1–2): e1827–e1833. DOI: https://doi.org/10.1016/j.jcrysgro.2004.11.256
8. Umeno Y., Shimada T., Kitamura T. Dislocation nucleation in a thin Cu fi lm from molecular dynamics
simulations: Instability activation by thermal fl uctuations. Phys. Rev. B. 2010;82(10): 104108/1–
104108/11. DOI: https://doi.org/10.1103/PhysRevB.82.104108
9. Urakaev F. Kh., Massalimov I. A. Energy fl uctuations and particle emission in a crack mouth.
Physics of the Solid State. 2005;47(9): 1675–1680. DOI: https://journals.ioffe.ru/articles/viewPDF/3966.
10. Koverda V. P., Terekhov V. N. Scaling of 1/f noise in nonequilibrium phase transitions. Technical Physics.
2004; 49(9):1104–1109. DOI: https://doi.org/10.1134/1.1800229
11. Zhigalskii G. P. Fluktuacii i shumi v elektronnyh tverdotel’nyh priborah [Fluctuation and noises in
electronic solid state devices]. Moscow: Fizmatlit Publ.; 2012. 512 p. (in Russ.)
12. Bityutskaya L. A., Mashkina E. S. System of kinetic parameters of the transition processes under
melting of crystalline substances. Phase Transition. 2000;71: 317–330. DOI: https://doi.org/10.1080/01411590008209312
13. Mashkina E. S. An anion infl uence on transient states during ionic crystals melting. Kondensirovannye
sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2011;13(3): 309–314. Available at: http://www.kcmf.vsu.ru/resources/t_13_3_2011_010.pdf (In Russ.)
14. Astaf’eva N. M. Wavelet analysis: basic theory and some applications. Phys. Usp. 1996;39(11): 1085–
1108. DOI: https://doi.org/10.1070/PU1996v039n11ABEH000177
15. Dremin I. M., Ivanov O. V., Nechitailo V. A. Wavelets and their uses. Phys. Usp. 2001;44(5): 447–
478. DOI: https://doi.org/10.1070/PU-2001v044n05ABEH000918
16. Arby P., Goncalves P., Vehel J. L. Scaling, fractals and wavelets. London: John Wiley & Sons; 2009.
464 p.
17. Smolentsev N. K. Osnovi teorii waveletov. Waveleti v MATLAB [Fundamentals of wavelet theory.
Wavelets in MATLAB]. Moscow: DMK Press; 2014. 628 p. (In Russ.)
18. Hurst H. E., Black R. P., Simaika Y. M. Long-term storage: An experimental study. London: Constable;
1965. 145 p.
19. Chen B. B., Imashev S. A. Evaluation of Hurst parameter on energetic spectrum based on wavelet
transform. Vestnik KRSU. 2007;7(8): 65–75. Available at: https://www.elibrary.ru/item.asp?id=13519890 (In
Russ., abstract in Eng.)
20. Zulpukarov M.-G. M., Malinetsky G. G., Podlazov A. V. Bifurcation theory inverse problem in
a noisy dynamical system. Example solution. Izvestiya VUZ. Applied Nonlinear Dynamics. 2005;13(5–6): 3–23.
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.