Usage of the Kolmogorov−Johnson−Mehl−Avrami Model for the Study of the Kinetics of the Formation of Natural Gas Hydrate in Inverse Oil Emulsions

  • Vladilina V. Koryakina Federal Research Centre “The Yakut Scientific Centre”, Institute of Oil and Gas Problems of the Siberian Branch of the RAS 20, Avtodorozhnaya ul., Yakutsk 677007, Russian Federation https://orcid.org/0000-0002-6650-0038
  • Elena Yu. Shitz Federal Research Centre “The Yakut Scientific Centre”, Institute of Oil and Gas Problems of the Siberian Branch of the RAS 20, Avtodorozhnaya ul., Yakutsk 677007, Russian Federation
Keywords: crystallisation, kinetics, Kolmogorov−Johnson−Mehl−Avrami model, differential scanning calorimetry, oil emulsion, natural gas hydrate, hydrate formation.

Abstract

The article presents the results of a study of the hydration of the aqueous phase in inverse oil emulsions with natural gas rich in methane (more than 90 vol.%). The aim of the work was to study the kinetics of the crystallisation of oil emulsions during the formation of natural gas hydrates in them using the method of differential scanning calorimetry (DSC).
The objects of the study were inverse oil emulsions containing 20, 40, 60, and 80 wt% of water. DSC is used under quasiequilibrium experiment conditions to study the kinetics of hydration of oil emulsions with gas.
The study showed the applicability of the Kolmogorov−Johnson−Mehl−Avrami model (KJMA) in order to describe the crystallisation process of inverse oil emulsions in a quasi-equilibrium DSC experiment. The kinetic parameters of the KJMA model in emulsions were determined for the processes of water drops conversion into ice, as well as their hydration with natural gas. It was shown that within the system “natural gas-oil-water” the process of ice formation is characterised by high values of the Avrami exponent (n > 3) and the degree of freedom (l = 3), and the process of natural gas hydrate formation
is characterised by low values of the Avrami exponent (n < 3) and medium degree of freedom (l = 1-3). It was shown that in a continuous aqueous phase, natural gas hydrates are formed by instantaneous nucleation in the form of separate onedimensional crystals; while in oil, hydrates are nucleated at a constant rate and, depending on the water content, grow in the form of disparate crystallites, shell, or spherulites. The obtained research results make it possible to deepen our knowledge of the kinetics and hydration mechanisms in oil emulsions, they can be used to complement the scientific basis
for creating new technologies for the joint transportation of oil and hydrated natural gas in it.

 

 

 

REFERENCES

1. Carroll J. Natural Gas Hydrates: A Guide for
Engineers. Oxford, UK: Gulf Professional Publishing;
2020. 392 р.
2. Maninder K., Zhenyuan Y., Praveen L. A Review
of clathrate hydrate nucleation. Sustainable Chemistry
& Engineering. 2017;5(12): 11176–11203. DOI: https://doi.org/10.1021/acssuschemeng.7b03238
3. Straume E. O., Morales R., Sum A. K. Perspectives
on gas hydrates cold flow technology. Energy &
Fuels. 2019;33(1): 1–15. DOI: https://doi.org/10.1021/acs.energyfuels.8b02816
4. Ribeiro C. P., Lage P. L. C. Modelling of hydrate
formation kinetics: State-of-the-art and future
directions. Chemical Engineering Science. 2008;63(8):
2007–2034. DOI: https://doi.org/10.1016/j.ces.2008.01.014
5. Englezos P., Kalogerakis N. E., Dholabhai P. D.,
Bishnoi P. R. Kinetics of gas hydrate formation from
mixtures of methane and ethane. Chemical Engineering
Science. 1987;42(11): 2659–2666. DOI: https://doi.org/10.1016/0009-2509(87)87016-1
6. Song G., Li Y., Wang W., Zhao P., Jiang K., Ye X.
Experimental study of hydrate formation in oil-water
systems using a high-pressure visual autoclave. AIChE
Journal. 2019;65(9): e16667. DOI: https://doi.org/10.1002/aic.16667
7. Liu Z., Song Y., Liu W., Lang C., Zhao J., Li Y.
Formation of methane hydrate in oil–water emulsion
governed by the hydrophilic and hydrophobic
properties of non-ionic surfactants. Energy & Fuels.
2019;33(6): 5777–5784. DOI: https://doi.org/10.1021/acs.energyfuels.9b01046
8. Talatori S., Barth T. Rate of hydrate formation
in crude oil/gas/water emulsions with different water
cuts. Journal of Petroleum Science and Engineering.
2012;80(1): 32–40. DOI: https://doi.org/10.1016/j.petrol.2011.10.010
9. Avrami M. Kinetics of phase change. II
Transformation-time relations for random distribution
of nuclei. Journal of Chemical Physics. 1940;8(2):
212–224. DOI: https://doi.org/10.1063/1.1750631
10. Palodkar A. V., Mandal S., Jana A. K. Modeling
growth kinetics of gas hydrate in porous media:
Experimental validation. Energy & Fuels. 2016;30(9):
7656–7665. DOI: https://doi.org/10.1021/acs.energyfuels.6b01397
11. Susilo R., Ripmeester J. A., Englezos P. Methane
conversion rate into structure H hydrate crystals from
ice. AIChE Journal. 2007;53(9): 2451–2460. DOI:
https://doi.org/10.1002/aic.11268
12. Naeiji P., Varaminian F. Differential scanning
calorimetry measurements and modeling of methane +
THF hydrate growth kinetics based on non-equilibrium
thermodynamics. Journal of Molecular Liquids. 2018;
263: 22–30. DOI: https://doi.org/10.1016/j.molliq.2018.04.107
13. Choupin T., Fayolle B., Régnier G., Paris C.,
Cinquin J., Brule B. A more reliable DSC-based
methodology to study crystallization kinetics:
Application to poly(ether-ketone-ketone) (PEKK)
copolymers. Polymer. 2018; 155: 109–115. DOI: https://doi.org/10.1016/j.polymer.2018.08.060
14. Tan C., Zhu J., Wang Z., Zhang K., Tian X., Cai
W. The crystallization kinetics of Co doping on Ni–
Mn–Sn magnetic shape memory alloy thin films. RSC
Advances. 2018;8(45): 25819–25828. DOI: https://doi.org/10.1039/c8ra04618b
15. Derkach S. R., Kolotova D. S., Simonsen G.,
Simon S. C., Sjöblom J., Andrianov A. V., Malkin A. Y.
Kinetics of crystallization of aqueous droplets in
water-in-crude oil emulsions at low temperatures.
Energy & Fuels. 2018;32(2): 2197–2202. DOI: https://doi.org/10.1021/acs.energyfuels.7b03457
16. Liu Z., Liu W., Lang C., Li Y., Yang M., Zhao J.,
Song Y. DSC studies of methane hydrate formation
and dissociation in water-in-mineral oil emulsions.
In: Proc. 16th International Heat Transfer Conference
(IHTC-16). 2018, 10-15 August, Beijing, China: 2018.
p. 1607–1613. DOI: https://doi.org/10.1615/ihtc16.cat.023453
17. Drelich A., Dalmazzone C., Pezron I., Liggieri L.,
Clausse D. DSC (Differential Scanning Calorimetry)
used to follow the evolution of W/O emulsions versus
time on ground and in space in the ISS. Oil & Gas
Sciences and Technology – Revue d’IFP Energies
Nouvelles. 2018;73(16): 1–9. DOI: https://doi.org/10.2516/ogst/2018003
18. Leister N., Karbstein H. Evaluating the stability
of double emulsions — A review of the masurement
techniques for the systematic investigation of
instability mechanisms. Colloids and Interfaces.
2020;4(8): 1–18. DOI: https://doi.org/10.3390/colloids4010008
19. Koryakina V.V., Ivanova I.K., Semenov M.E.,
Rozhin I.I., Fedorova A.F., Shits E.Y. Specific features
of the growth, composition, and content of natural gas
hydrates synthesized in inverted oil emulsions.
Russian Journal of Applied Chemistry. 2017;90(8):
1258–1265. DOI: https://doi.org/10.1134/s1070427217080110
20. Dill E. D., Folmer J. C. W., Martin J. D. Crystal
growth simulations to establish physically relevant
kinetic parameters from the empirical Kolmogorov–
Johnson–Mehl–Avrami Model. Chemistry of Materials.
2013;25(20): 3941–3951. DOI: https://doi.org/10.1021/cm402751x
21. 2. Sakovich G.V. Zamechaniya o nekotorykh
uravneniyakh kinetiki reaktsii s uchastiem tverdykh
veshchestv, primenyaemykh v nastoyashchee vremya
[Remarks on some equations of the kinetics of
reactions involving solids currently used]. Uchenye
zapiski Tomskogo universiteta. 1955; 26: 103–110. (In
Russ.)
22. 3. Groysman A. G. Teplofizicheskie svoistva
gazovykh gidratov [Thermophysical properties of gas
hydrates]. Novosibirsk: Nauka Publ.; 1985. 95 p. (In
Russ.)
23. 4. Principles and Applications of Thermal
Analysis. Ed. P. Gabbott. Oxford, UK: Blackwell
Publishing Ltd.; 2008. 464 p.
24. Ruitenberg G., Woldt E., Petford-Long A. K.
Comparing the Johnson–Mehl–Avrami–Kolmogorov
equations for isothermal and linear heating conditions.
Thermochimica Acta. 2001;378(1–2): 97–105. DOI:
https://doi.org/10.1016/s0040-6031(01)00584-6
25. Stoporev A. S., Manakov A. Yu., Kosyakov V. I.,
Shestakov V. A., Altunina K. A., Strelets L. A. Nucleation
of methane hydrate in water-in-oil emulsions: role of
the phase boundary. Energy & Fuels. 2016;30(5):
3735–3741. DOI: https://doi.org/10.1021/acs.energyfuels.5b02279
26. Kislitsin A. A., Drachuk A. O., Molokitina N. S.,
Podenko L. S. Diffusion model of methane hydrate
formation in “Dry Water”. Russian Journal of Physical
Chemistry A. 2020;94(2): 405–411. DOI: https://doi.org/10.1134/s003602442002017x
27. Kodama T., Ohmura R. Crystal growth of
clathrate hydrate in liquid water in contact with
methane + ethane + propane gas mixture. Journal of
Chemical Technology & Biotechnology. 2014; 89(12):
1982–1986. DOI: https://doi.org/10.1002/jctb.4292
28. Adamova T. P., Stoporev A. S., Manakov A. Y.
Visual studies of methane hydrate formation on the
water – oil boundaries. Crystal Growth & Design.
2018;18(11): 6713–6722. DOI: https://doi.org/10.1021/acs.cgd.8b00986
29. Dong S., Liu C., Han W., Li M., Zhang J., Chen G.
The effect of the hydrate antiagglomerant on hydrate
crystallization at the oil–water interface. ACS Omega.
2020;5(7): 3315–3321. DOI: https://doi.org/10.1021/acsomega.9b03395
30. Guo D., Ou W., Ning F., Fang B., Liu Z., Fang X.,
He Z. The effects of hydrate formation and dissociation
on the water-oil interface: Insight into the stability of
an emulsion. Fuel. 2020; 266: 116980. DOI:
https://doi.org/10.1016/j.fuel.2019.116980

Downloads

Download data is not yet available.

Author Biographies

Vladilina V. Koryakina, Federal Research Centre “The Yakut Scientific Centre”, Institute of Oil and Gas Problems of the Siberian Branch of the RAS 20, Avtodorozhnaya ul., Yakutsk 677007, Russian Federation

research fellow, Federal
Research Centre “The Yakut Scientific Centre of the
Siberian Branch of the RAS”, autonomous division of
the Institute of Oil and Gas Problems of the Siberian
Branch of the RAS, Technogenic Gas Hydrate
Laboratory No. 3, Yakutsk, Russian Federation; e-mail:
koryakinavv@ipng.ysn.ru.

Elena Yu. Shitz, Federal Research Centre “The Yakut Scientific Centre”, Institute of Oil and Gas Problems of the Siberian Branch of the RAS 20, Avtodorozhnaya ul., Yakutsk 677007, Russian Federation

DSc in Engineering, Associate
Professor, retired; e-mail: l.u.shitz@mail.ru.

Published
2020-09-18
How to Cite
Koryakina, V. V., & Shitz, E. Y. (2020). Usage of the Kolmogorov−Johnson−Mehl−Avrami Model for the Study of the Kinetics of the Formation of Natural Gas Hydrate in Inverse Oil Emulsions. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(3), 327-335. https://doi.org/10.17308/kcmf.2020.22/2963
Section
Статьи