Synthesis, Microstructural and Electromagnetic Characteristics of Cobalt-Zinc Ferrite

Keywords: glycine-nitrate synthesis, cobalt-zinc ferrite, ferrimagnetic, microstructure, composite materials, magnetic permeability, dielectric permittivity.


In this study, cobalt-zinc ferrite (Co0.5Zn0.5Fe2O4) was obtained by the glycine-nitrate method followed by annealing in a high-temperature furnace at a temperature of 1300 °С. The qualitative composition and its microstructural characteristics were determined using energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.
The analysis of the micrographs demonstrated that the cobalt-zinc ferrite micropowder obtained after thermal annealing has an average particle size of 1.7±1 μm. The analysis of XRD data showed that the annealed cobalt-zinc ferrite micropowder has a cubic crystal structure with a lattice parameter of a = 8.415 Å. Using the Scherrer and Williamson-Hall equations we calculated the average sizes of the coherent scattering regions, which were commensurate with the size of crystallites: according to the Scherrer equation D = 28.26 nm and according to the Williamson-Hall equation D = 33.59 nm and the microstress value e = 5.62×10–4 in the ferrite structure.
Using a vector network analyser, the electromagnetic properties of a composite material based on synthesized cobalt-zinc ferrite were determined. The frequency dependences of the magnetic and dielectric permeability values from the measured S-parameters of the composite material (50% ferrite filler by weight and 50% paraffin) were determined using the Nicolson-Ross-Weir method and were in the range of 0.015–7 GHz. The analysis of the graphs of the dependence of the magnetic permeability on the frequency of electromagnetic radiation revealed a resonance frequency of fr ≈ 2.3 GHz. The discovered
magnetic resonance in the UHF range allows the obtained material to be considered as being promising for use as an effective absorber of electromagnetic radiation in the range of 2–2.5 GHz.





1. Thakur P., Chahar D., Taneja S., Bhalla N. and
Thakur A. A review on MnZn ferrites: Synthesis,
characterization and applications. Ceramics
International. 2020;46(10): 15740–15763. DOI:
2. Pullar R. C. Hexagonal ferrites: A review of the
synthesis, properties and applications of hexaferrite
ceramics. Progress in Materials Science. 2012;57(7):
1191–1334. DOI:
3. Kharisov B. I., Dias H. V. R., Kharissova O. V.
Mini-review: Ferrite nanoparticles in the catalysis.
Arabian Journal of Chemistry. 2019;12(7): 1234–1246.
4. Stergiou C. Microstructure and electromagnetic
properties of Ni-Zn-Co ferrite up to 20 GHz. Advances
in Materials Science and Engineering. 2016;2016: 1–7.
5. Economos G. Magnetic ceramics: I, General
methods of magnetic ferrite preparation. Journal of the
American Ceramic Society. 1955;38(7): 241–244. DOI:
6. Yurkov G. Y., Shashkeev K. A., Kondrashov S. V.,
Popkov O. V., Shcherbakova G. I., Zhigalov D. V.,
Pankratov D. A., Ovchenkov E. A., Koksharov Y. A.
Synthesis and magnetic properties of cobalt ferrite
nanoparticles in polycarbosilane ceramic matrix.
Journal of Alloys and Compounds. 2016;686: 421–430.
7. Karakaş Z. K., Boncukçuoğlu R., Karakaş İ. H.
The effects of fuel type in synthesis of NiFe2O4
nanoparticles by microwave assisted combustion
method. Journal of Physics: Conference Series. 2016;
707: 012046. DOI:
8. Shirsath S. E., Jadhav S. S., Mane M. L., Li S.
Handbook of sol-gel science and technology. Springer,
Cham.; 2016. p. 1–41. DOI:
9. Vyzulin S. A., Kalikintseva D. A., Miroshnichenko
E. L., Buz’ko V. Y., Goryachko A. I. Microwave
absorption properties of nickel–zinc ferrites
synthesized by different means. Bulletin of the Russian
Academy of Sciences: Physics. 2018;82(8): 943–945.
10. Janasi S. R., Emura M., Landgraf F. J. G.,
Rodrigues D. The effects of synthesis variables on the
magnetic properties of coprecipitated barium ferrite
powders. Journal of Magnetism and Magnetic Materials.
2002;238(2-3): 168–172. DOI:
11. Ahmed Y. M. Z. Synthesis of manganese ferrite
from non-standard raw materials using ceramic
technique. Ceramics International. 2010;36(3): 969–
977. DOI:
12. Mahadule R. K., Arjunwadkar P. R., Mahabole
M. P. Synthesis and characterization of
CaxSryBa1–x–yFe12–zLazO19 by standard ceramic method.
International Journal of Metals. 2013;2013: 1–7. DOI:
13. Tarța V. F., Chicinaş I., Marinca T. F.,
Neamţu B. V., Popa F., Prica C. V. Synthesis of the
nanocrystalline/nnosized NiFe2O4 powder by ceramic
method and mechanical milling. Solid State Phenomena.
2012;188: 27–30. DOI:
14. Pradhan A. K., Saha S., Nath T. K. AC and DC
electrical conductivity, dielectric and magnetic
properties of Co0.65Zn0.35Fe2−xMoxO4 (x = 0.0, 0.1 and 0.2)
ferrites. Applied Physics A. 2017;123(11): 715. DOI:
15. Low Z. H., Ismail I., Tan K. S. Sintering
processing of complex magnetic ceramic oxides: A
comparison between sintering of bottom-up approach
synthesis and mechanochemical process of top-down
approach synthesis. Sintering Technology - Method and
Application. Malin Liu (ed.). 2018: 25–43. DOI:
16. Costa A. C. F. M., Morelli M. R., Kiminami
R. H. G. A. Combustion synthesis: Effect of urea on
the reaction and characteristics of Ni–Zn ferrite
powders. Journal of Materials Synthesis and Processing.
2001; 9(6): 347–352. DOI:
17. Maleknejad Z., Gheisari K., Raouf A. H.
Structure, microstructure, magnetic, electromagnetic,
and dielectric properties of nanostructured Mn–Zn
ferrite synthesized by microwave-induced urea–
nitrate process. Journal of Superconductivity and Novel
Magnetism. 2016;29(10): 2523–2534. DOI:
18. Jalaiah K., Chandra Mouli K., Vijaya Babu K.,
Krishnaiah R.V. The structural, DC resistivity and
magnetic properties of Mg and Zr Co-substituted
Ni0.5Zn0.5Fe2O4. Journal of Science: Advanced Materials
and Devices. 2018;4(2): 310–318 DOI:
19. Yue Z., Zhou J., Li L., Zhang H., Gui Z. Synthesis
of nanocrystalline NiCuZn ferrite powders by sol–gel
auto-combustion method. Journal of Magnetism and
Magnetic Materials. 2000;208(1-2): 55–60. DOI:
20. Chick L. A., Pederson L. R., Maupin G. D.,
Bates J. L., Thomas L. E., Exarhos G. J. Glycine-nitrate
combustion synthesis of oxide ceramic powders.
Materials Letters. 1990;10(1-2): 6–12. DOI:
21. Salunkhe A. B., Khot V. M., Phadatare M. R.,
Pawar S. H. Combustion synthesis of cobalt ferrite
nanoparticles—Influence of fuel to oxidizer ratio.
Journal of Alloys and Compounds. 2012;514: 91–96.
22. Martinson K. D., Cherepkova I. A., Sokolov V. V.
Formation of cobalt ferrite nanoparticles via glycine-
nitrate combustion and their magnetic properties.
Glass Physics and Chemistry. 2018;44(1): 21–25.
23. Kuzmin V. A., Zagrai I. A. A comprehensive
study of combustion products generated from pulverized
peat combustion in the furnace of BKZ-210-140F
steam boiler. Journal of Physics: Conference Series.
2017;891: 012226. DOI:
24. Maleki A., Hosseini N., Taherizadeh A. Synthesis
and characterization of cobalt ferrite nanoparticles
prepared by the glycine-nitrate process. Ceramics International.
2018;44(7): 8576–8581. DOI:
25. Waje S. B., Hashim M., Wan Yusoff W. D., Abbas
Z. Sintering temperature dependence of room
temperature magnetic and dielectric properties of
Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed
nanoparticles. Journal of Magnetism and Magnetic
Materials. 2010;322(6): 686–691. DOI:
26. Nicolson A. M., Ross G. F. Measurement of the
intrinsic properties of materials by time-domain techniques.
IEEE Transactions on Instrumentation and
Measurement. 1970;19(4): 377–382. DOI:
27. Rothwell E. J., Frasch J. L., Ellison S. M., Chahal
P., Ouedraogo R.O. Analysis of the Nicolson-
Ross-Weir method for characterizing the electromagnetic
properties of engineered materials. Progress
In Electromagnetics Research. 2016;157: 31–47. DOI:
28. Vicente A. N., Dip G. M., Junqueira C. The step
by step development of NRW method. Proceedings
Article in: 2011 SBMO/IEEE MTT-S International Microwave
and Optoelectronics Conference (IMOC 2011).
29 Oct. –1 Nov. 2011. 738–742. DOI:
29. Ivanin S. N., Buz’ko V. Yu., Goryachko A. I.,
Panyushkin V. T. Electromagnetic characteristics of
heteroligand complexes of gadolinium stearate. Russian
Journal of Physical Chemistry A. 2020;94(8):
1623–1627. DOI:
30. Liu Y.-W., Zhang J., Gu L.-S., Wang L.-X.,
Zhang Q.-T. Preparation and electromagnetic properties
of nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Metals. 2016.


Download data is not yet available.

Author Biographies

Alexander Ivanovich Goryachko, Kuban State University, 14, Stavropolskaya str., Krasnodar 350040, Russian Federation

PhD student,
Department of Theoretical Physics and Computer
Technologies, Faculty of Physics and Technology,
Kuban State University, Krasnodar, Russian Federation;

Sergey Nikolaevich Ivanin, Kuban State University, 14, Stavropolskaya str., Krasnodar 350040, Russian Federation

PhD student, Kuban
State University, Krasnodar, Russian Federation;

Vladimir Yurievich Buzko, Kuban State University, 14, Stavropolskaya str., Krasnodar 350040, Russian Federation

PhD in Chemistry,
Associate Professor, Department of Radiophysics and
Nanotechnology, Faculty of Physics and Technology,
Kuban State University, Krasnodar, Russian Federation;

How to Cite
Goryachko, A. I., Ivanin, S. N., & Buzko, V. Y. (2020). Synthesis, Microstructural and Electromagnetic Characteristics of Cobalt-Zinc Ferrite. Condensed Matter and Interphases, 22(4), 446-452.