Estimation of Diffusion-Kinetic and Thermodynamic Properties of Al‑Sm-H Alloys
Abstract
Metal hydride systems for hydrogen storage are now commercially manufactured and the demand for them is constantly growing. Metal hydrides have the following features: a unique combination of properties of metal-hydrogen systems; extremely high volumetric densities of hydrogen atoms in the metal matrix; a wide range of operating pressures and temperatures; the selectivity of the hydrogen absorption process; significant changes in the physical properties of the metal when it is saturated with hydrogen; their catalytic activity, etc. The purpose of our research was to study the effect of the temperature of cathodic polarisation on the diffusion-kinetic, thermodynamic, and physical properties of Al-Sm-H alloys.
In our study we used electrodes of Al-Sm-H alloys obtained electrochemically using cathodic intercalation from a 0.5 M dimethylformamide solution of samarium salicylate at Еcp = –2.9 V (relative to the non-aqueous silver chloride electrode) and the temperature of 25 °С for 1 hour. We used the electromotive force method to determine the thermodynamic properties: Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH). The potentiostatic method was used to calculate the diffusionkinetic properties: intercalation constants, adsorption, switching current density, and the diffusion coefficient. The microstructural analysis allowed us to determine the effect of the temperature on the changes in the surface morphology.
The study showed that an increase in the temperature results in an increase in ΔG, ΔS, and ΔH, which means that at higher temperatures the degree of the system disorder increases. Nevertheless, the calculated characteristics comply with the existing literature.
References
1. Fateev V. N., Alexeeva O. K., Korobtsev S. V.,
Seregina E. A., Fateeva T. V., Grigorev A. S., Aliyev A. Sh.
Problems of accumulation and storage of hydrogen.
Chemical Problems. 2018;16(4): 453–483. DOI:https://doi.org/10.32737/2221-8688-2018-4-453-483 (In
Russ., abstract in Eng.)
2. Kaur M., Pal K. Review on hydrogen storage
materials and methods from an electrochemical viewpoint.
Journal of Energy Storage. 2019;23: 234–249.
DOI: https://doi.org/10.1016/j.est.2019.03.020
3. Kumar D., Muthukumar K. An overview on activation
of aluminium-water reaction for enhanced
hydrogen production. Journal of Alloys and Compounds.
2020;835: 155189. DOI: https://doi.org/10.1016/j.jallcom.2020.155189
4. Litvinov V., Okseniuk I., Shevchenko D., Bobkov
V. SIMS study of the surface of lanthanum-based
alloys. Ukrainian Journal of Physics. 2018;62(10): 845.
DOI: https://doi.org/10.15407/ujpe62.10.0845
5. Schneemann A., White J. L., Kang S., Jeong S.,
Wan L. F., Cho E. S., Heo T. W., Prendergast D., Urban
J. J., Wood B. C., Allendorf M. D., Stavila V. Nanostructured
metal hydrides for hydrogen storage. Chemical
Reviews. 2018;118(22): 10775–10839. DOI: https://doi.org/10.1021/acs.chemrev.8b00313
6. Wang Y., Chen X., Zhang H., Xia G., Sun D., Yu X.
Heterostructures built in metal hydrides for advanced
hydrogen storage reversibility. Advanced Materials.
2020;32(31): 2002647. DOI: https://doi.org/10.1002/adma.202002647
7. von Colbe J. B., Ares J. R., Barale J., Baricco M.,
Buckley C., Capurso G., Gallandate N., Grant D. M.,
Guzik M. N.; Jacob I., Jensen E. H., Jensen T., Jepsen J.,
Klassen T., Lototskyy M. V., Manickam K., Montone A.,
Puszkiel J., Sartori S., Sheppard D. A., Stuart A., Walker
G., Webb C. J.,Yang H.,Yartys V., Züttel A., Dornheim
M. Application of hydrides in hydrogen storage
and compression: Achievements, outlook and perspectives.
International Journal of Hydrogen Energy.
2019;44(15): 7780–7808. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.104
8. Milanese C., Jensen T. R., Hauback B. C., Pistidda
C., Dornheim M., Yang H., Lombardo L., Zuettel A.,
Filinchuk Y., Ngene P., de Jongh P. E., Buckley C. E.,
Dematteis E. M., Baricco M. Complex hydrides for
energy storage. International Journal of Hydrogen Energy.
2019;44(15): 7860–7874. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.208
9. Abe J. O., Popoola A. P. I., Ajenifuja E., Popoola
O. M. Hydrogen energy, economy and storage: review
and recommendation. International Journal of Hydrogen
Energy. 2019;44(29): 15072–15086. DOI: https://doi.org/10.1016/j.ijhydene.2019.04.068
10. He T., Cao H., Chen P. Complex hydrides for
energy storage, conversion, and utilization. Advanced
Materials. 2019;31(50): 1902757. DOI: https://doi.org/10.1002/adma.201902757
11. Luo Y., Wang Q., Li J., Xu F., Sun L., Zou Y.,
Chua H., Li B., Zhang K. Enhanced hydrogen storage/
sensing of metal hydrides by nanomodification. Materials
Today Nano. 2020;9: 100071. DOI: https://doi.org/10.1016/j.mtnano.2019.100071
12. Gambini M., Stilo T., Vellini M. Hydrogen storage
systems for fuel cells: Comparison between high
and low-temperature metal hydrides. International
Journal of Hydrogen Energy. 2019;44(29): 15118–15134.
DOI: https://doi.org/10.1016/j.ijhydene.2019.04.083
13. Kim, K. C. A review on design strategies for
metal hydrides with enhanced reaction thermodynamics
for hydrogen storage applications. International
Journal of Energy Research. 2018;42(4): 1455–1468.
DOI: https://doi.org/10.1002/er.3919
14. Oliveira A. C., Pavão A. C. Theoretical study of
hydrogen storage in metal hydrides. Journal of Molecular
Modelling. 2018;24(6): 127. DOI: https://doi.org/10.1007/s00894-018-3661-4
15. Møller K. T., Sheppard D., Ravnsbæk D. B.,
Buckley C. E., Akiba E., Li H. W., Jensen T. R. Complex
metal hydrides for hydrogen, thermal and electrochemical
energy storage. Energies. 2017;10(10): 1645.
DOI: https://doi.org/10.3390/en10101645
16. Huot J., Cuevas F., Deledda S., Edalati K., Filinchuk
Y., Grosdidier T., Hauback B.C., Heere M., Jensen
T. R., Latroch M., Sartori S. Mechanochemistry of
metal hydrides: Recent advances. Materials.
2019;12(17): 2778. DOI: https://doi.org/10.3390/ma12172778
17. Tarasov B. P., Fursikov P. V., Volodin A. A., Bocharnikov
M. S., Shimkus Y. Y., Kashin A. M., Yartysc
V. A., Chidzivad S., Pasupathid S., Lotot skyy M. V. Metal hydride hydrogen storage and compression
systems for energy storage technologies. International
Journal of Hydrogen Energy. 2020. DOI:
https://doi.org/10.1016/j.ijhydene.2020.07.085
18. Zhao H., Xia J., Yin D., Luo M., Yan C., Du Y.
Rare earth incorporated electrode materials for advanced
energy storage. Coordination Chemistry Reviews.
2019;390: 32–49. DOI: https://doi.org/10.1016/j.ccr.2019.03.011
19. Guzik M. N., Mohtadi R., Sartori S. Lightweight
complex metal hydrides for Li-, Na-, and Mg-based
batteries. Journal of Materials Research. 2019;34(6):
877–904. DOI: https://doi.org/10.1557/jmr.2019.82
20. Edward P. P., Kuznetsov V. L., David W. I. F.
(2007). Hydrogen energy. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering
Sciences. 2007;365(1853): 1043–1056. DOI:
https://doi.org/10.1098/rsta.2006.1965
21. Weidenthaler C. Crystal structure evolution of
complex metal aluminum hydrides upon hydrogen
release. Journal of Energy Chemistry. 2020;42: 133–143.
DOI: https://doi.org/10.1016/j.jechem.2019.05.026
22. Kunkel N., Wylezich T. Recent advances in rare
earth-doped hydrides. Zeitschrift für Anorganische und
Allgemeine Chemie. 2019;645(3): 137–145. DOI:
https://doi.org/10.1002/zaac.201800408
23. Milanese C., Garroni S., Gennari F., Marini A.,
Klassen T., Dornheim M., Pistidda, C. Solid state hydrogen
storage in alanates and alanate-based compounds:
A review. Metals. 2018;8(8): 567. DOI: https://doi.org/10.3390/met8080567
24. Gots I. Y., Lukyanova V. O. Influence of the
introducing rare-earth metal on the strength of the
aluminum electrodes. Perspektivnye Materialy. 2020;2:
39–47. DOI: https://doi.org/10.30791/1028-978x-2020-2-39-47
25. Krapivnyj N. G. Opredelenie kineticheskih
parametrov stadii proniknovenija vodoroda v metally
nestacionarnym jelektrohimicheskim metodom
[Determination of the kinetic parameters of the stage
of hydrogen penetration into metals by a nonstationary
electrochemical method] Electrochemistry. 1981;17(5):
672–677. (In Russ.)
26. Krapivnyj N. G. Primenenie jelektrohimicheskoj
jekstrakcii dlja izuchenija navodorozhivanie metallov
[Application of electrochemical extraction to the study
of the hydrogenation of metals]. Electrochemistry,
1982;18 (9): 1174–1178. (In Russ.)
27. Pridatko K. I., Churikov A. V., Volgin M. A.
Determination of lithium diffusion rate by pulse
potentiostatic method. Electrochemical Energetics.
2003;3(4): 184–191. (In Russ., abstract in Eng.)
Available at: https://energetica.sgu.ru/ru/articles/opredelenie-skorosti-diffuzii-litiya-impulsnympotenciostaticheskim-metodom
28. Ol’shanskaja L. N., Terina E. M., Nichvolodin A. G.
Thermodynamic characteristics of lithium intercalation
in С8СrO3 electrode modified by addition of
graphitizated soot. Electrochemical Energetics.
2001;1(4): 49–53. (In Russ., abstract in Eng.) Available
a t : https://energetica.sgu.ru/ru/articles/termodinamicheskie-harakteristiki-interkalatovlitiya-
v-s8cro3-elektrode-modificirovannom
29. Patrikeev Yu.B., Filand Yu.M. Splavy-nakopiteli
vodoroda na osnove RZJe dlja jenergopreobrazujushhih
ustrojstv [Hydrogen-storage alloys for energy
conversion devices]. Alternativnaya Energetika i
Ekologiya = Alternative Energy and Ecology. 2006;7: 32.
(in Russ.) Available at: https://elibrary.ru/item.asp?id=9428372
30. Golovin P. V., Medvedeva N. A., Skrjabina N. E.
Katodnoe povedenie splavov na osnove titana v reakcii
vydelenija vodoroda [Cathodic behavior of titaniumbased
alloys in the hydrogen evolution reaction].
Bulletin of the Technological University. 2012;15(17):
58–61. (In Russ.) Available at: https://elibrary.ru/item.asp?id=18125773
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.