Spectral manifestations of the exciton-plasmon interaction of Ag2S quantum dots with silver and gold nanoparticles

Keywords: silver and gold nanoparticles, silver sulfide quantum dots, hybrid nanostructures, luminescence spectrum

Abstract

The purpose of our study was to develop methods for creating hybrid nanostructures based on colloidal Ag2S quantum dots, pyramidal silver nanoparticles, Au nanorods, and to determine the spectral-luminescent manifestations of exciton-plasmon interactions in these structures. The objects of the study were Ag2S quantum dots passivated with thioglycolic acid (Ag2S/TGA QDs) and 2-mercaptopropionic acid (Ag2S/2-MPA QDs), gold nanorods (Au NRs), silver nanoparticles with pyramidal geometry (Ag NPs), and their mixtures. The spectral properties were studied using a USB2000+ with a PMC-100-20 photomultiplier system (Becker & Hickl Germany). The article considers the transformation of the luminescence spectra of colloidal Ag2S/TGA QDs and Ag2S/2-MPA QDs in mixtures with pyramidal Ag NPs and Au NRs. The study demonstrated
the presence of the effects of the contour transformation of the luminescence spectra due to the Fano effect, as well as the luminescence quenching following direct contact between QDs and NPs

Downloads

Download data is not yet available.

Author Biographies

Irina G. Grevtseva, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

 PhD in Physics and Mathematics,
lecturer, Department of Optics and Spectroscopy,
Voronezh State University, Voronezh, Russian
Federation; e-mail: grevtseva_ig@inbox.ru

Tamara A. Chevychelova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student
Department of Optics and Spectroscopy, Voronezh
State University, Voronezh, Russian Federation;
e-mail: t.chevychelova@rambler.ru

Violetta N. Derepko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student
Department of Optics and Spectroscopy, Voronezh
State University, Voronezh, Russian Federation; e-mail: viol.physics@gmail.com. 

Oleg V. Ovchinnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Physics and
Mathematics, Professor, Department of Optics and
Spectroscopy, Voronezh State University,
Voronezh, Russian Federation; e-mail:
ovchinnikov_o_v@rambler.ru

Mikhail S Smirnov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and Mathematics,
Associate Professor, Department of Optics and
Spectroscopy, Voronezh State University, Voronezh,
Russian Federation; e-mail: smirnov_m_s@mail.ru.

Aleksey S. Perepelitsa, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and
Mathematics, senior lecturer, Department of Optics
and Spectroscopy, Voronezh State University,
Voronezh, Russian Federation; e-mail: a-perepelitsa@yandex.ru.

Anna S. Parshina, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

master’s degree student,
Department of Materials Science and Nanotechnology,
Voronezh State University, Voronezh, Russian
Federation; e-mail: anyuta_parshina@mail.ru.

References

Fantoni A., Fernandes M., Vygranenko Y., Louro P., Vieira M., Silva R. P. O., Texeira D., Ribeiro A. P. C., Prazeres M., Alegria E. C. B. A. Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applications. Optical and Quantum Electronics. 2018;50(246): 1–12. https://doi.org/10.1007/s11082-018-1523-z

Hentschel M., Metzger B., Knabe B., Buse K., Giessen H. Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas. Beilstein J. Nanotechnol. 2016;7(111): 111-120. https://doi.org/10.3762/bjnano.7.13

Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7): 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

Daniel M. C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews. 2004;104(1): 293–346. https://doi.org/10.1021/cr030698+

Garcia M. A. Surface plasmons in metallic nanoparticles: fundamentals and applications. Journal of Physics D: Applied Physics. 2011;44(28): 283001(1-20). https://doi.org/10.1088/0022-3727/44/28/283001

Luo Y., Zhao J. Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Research. 2019;12(9): 2164–2171. https://doi.org/10.1007/s12274-019-2390-z

Kim K.-S., Kim J.-H., Kim H., Laquai F., Arifin E., Lee J.-K., Yoo S., Sohn B.-H. Switching Off FRET in the hybrid assemblies of diblock copolymer micelles, quantum dots, and dyes by plasmonic nanoparticles. ACS Nano. 2012;6(6): 5051–5059. https://doi.org/10.1021/nn301893e

Ovchinnikov O. V., Kondratenko T. S., Grevtseva I. G., Smirnov M. S., Pokutnyi S. I. Sensitization of photoprocesses in colloidal Ag2S quantum dots by dye molecules. Journal of Nanophotonics. 2016;10(3): 033505. https://doi.org/10.1117/1.JNP.10.033505

Ovchinnikov O. V., Smirnov M. S., Shapiro B. I., Shatskikh T. S., Latyshev A. N., Mien Ph. Thi Hai, Khokhlov V. Yu. Spectral manifestations of hybrid association of CdS colloidal quantum dots with methylene blue molecules. Optics and Spectroscopy. 2013;115(3): 389–397. https://doi.org/10.7868/S0030403413090195

Kondratenko T. S., Ovchinnikov O. V., Grevtseva I. G., Smirnov M. S. Organic–inorganic nanostructures for luminescent indication in the nearinfrared range. Technical Physics Letters. 2016;42(4): 365–367. https://doi.org/10.1134/S1063785016040088

Etacheri V., Georgekutty R., Seery M. K., Pillai S. C. Single step morphology-controlled synthesis of silver nanoparticles. MRS Proceedings. 2009;1217: 1217-Y08-40.: https://doi.org/10.1557/PROC-1217-Y08-40

Shah K. W., Sreethawong T., Liu S. H., Zhang S. Y., Li S. T., Han M. Y. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature. Nanoscale. 2014;6(19): 11273–11282. https://doi.org/10.1039/c4nr03306j

Fedutik Y., Temnov V. V., Schöps O., Woggon U., Artemyev M. V. Exciton-plasmon-photon conversion in plasmonic nanostructures. Physical Review Letters. 2007;99(13): 136802. https://doi.org/10.1103/PhysRevLett.99.136802

Zhang W., Govorov A. O., Bryant G. W. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. Physical Review Letters. 2006;97(14): 146804. https://doi.org/10.1103/PhysRevLett.97.146804

Hildebrandt N., Spillmann Ch. M., Algar W. R., Pons T., Stewart M. H., Oh E., Susumu K., Díaz S. A., Delehanty J. B., Medintz I. L. Energy transfer with semiconductor quantum dot bioconjugates: A aersatile platform for biosensing, energy harvesting, and other developing applications. Chemical Reviews. 2017; 117(2): 536–711. https://doi.org/10.1021/acs.chemrev.6b00030

Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., Nitschke R., Nann T. Quantum dots versus organic dyes as fluorescent labels. Nature Methods. 2008;5(5): 763–775. https://doi.org/10.1038/nmeth.1248

17. Ievlev V. M., Latyshev A. N., Ovchinnikov O. V., Smirnov M. S., Klyuev V. G., Kholkina A. M., Utekhin A. N., Evlev A. B. Photostimulated formation of anti-stokes luminescence centers in ionic covalent crystals. Doklady Physics. 2006;51(8): 400–402. https://doi.org/10.1134/S1028335806080027

Ovchinnikov O. V., Smirnov M. S., Latyshev A. N., Stasel’ko D. I. Photostimulated formation of sensitized anti-stokes luminescence centers in AgCl(I) microcrystals. Optics and Spectroscopy. 2007;103(3): 482-489. https://doi.org/10.1134/S0030400X07090172

Durach M., Rusina A., Stockman M. I., Nelson K., Toward full spatiotemporal control on the nanoscale. Nano Letters. 2007;7(10): 3145–3149. https://doi.org/10.1021/nl071718g

Komarala V. K., Rakovich Yu. P., Bradley A. L. Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Applied Physics Letters. 2006; 89 (25): 253118. https://doi.org/10.1063/1.2422906

Gong H. M., Wang X. H., Du Y. M., Wang Q. Q. Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots. The Journal of Chemical Physics. 2006;125(2): 024707. https://doi.org/10.1063/1.2212400

Ovchinnikov O. V., Aslanov S. V., Smirnov M. S., Grevtseva I. G., Perepelitsa A. S. Photostimulated control of luminescence quantum yield for colloidal Ag2S/2-MPA quantum dots. RSC Advances. 2019;9(64): 37312–37320. https://doi.org/10.1039/C9RA07047H

Kondratenko T. S., Zvyagin A. I., Smirnov M. S., Grevtseva I. G., Perepelitsa A. S., Ovchinnikov O. V. Luminescence and nonlinear optical properties of colloidal Ag2S quantum dots. Journal of Luminescence. 2019;208: 193-200. https://doi.org/10.1016/j.jlumin.2018.12.042

Kondratenko T. S., Grevtseva I. G., Zvyagin A. I., Ovchinnikov O. V., Smirnov M. S. Luminescence and nonlinear optical properties of hybrid associates of Ag2S quantum dots with molecules of thiazine dyes. Optics and Spectroscopy. 2018;124(5): 673–680. https://doi.org/10.21883/OS.2018.05.45945.310-17

Purcell E. M. Spontaneous emission probabilities at radio frequencies. Physical Review. 1946;69: 681. https://doi.org/ 10.1007/978-1-4615-1963-8_40

Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review. 1961;124: 1866–1878. https://doi.org/10.1103/PhysRev.124.1866

Published
2021-03-16
How to Cite
Grevtseva, I. G., Chevychelova, T. A., Derepko, V. N., Ovchinnikov, O. V., Smirnov, M. S., Perepelitsa, A. S., & Parshina, A. S. (2021). Spectral manifestations of the exciton-plasmon interaction of Ag2S quantum dots with silver and gold nanoparticles. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(1), 25-31. https://doi.org/10.17308/kcmf.2021.23/3294
Section
Статьи