The structure of carbon nanotubes in a polymer matrix

  • Georgii V. Kozlov Kabardino-Balkarian State University named after H. M. Berbekov, 173 Chernyshevsky str., Nalchik 360004, Kabardafterino-Balkarian Republic, Russian Federation https://orcid.org/0000-0002-9503-9113
  • Gasan M. Magomedov Dagestan State Pedagogical University, 57 Yaragskogo ul., Makhachkala 367003, the Republic of Dagestan, Russian Federation https://orcid.org/0000-0002-1278-9278
  • Gusein M. Magomedov Dagestan State Pedagogical University, 57 Yaragskogo ul., Makhachkala 367003, the Republic of Dagestan, Russian Federation https://orcid.org/0000-0002-5525-5970
  • Igor V. Dolbin Kabardino-Balkarian State University named after H. M. Berbekov, 173 Chernyshevsky str., Nalchik 360004, Kabardafterino-Balkarian Republic, Russian Federation https://orcid.org/0000-0001-9148-2831
Keywords: Nanocomposite, Carbon nanotubes, Structure, Interfacial layer, Ring-like formations, Reinforcement degree

Abstract

We carried out an analytical structural analysis of interfacial effects and differences in the reinforcing ability of carbon nanotubes for polydicyclopentadiene/carbon nanotube nanocomposites with elastomeric and glassy matrices. In general, it showed that the reinforcing (strengthening) element of the structure of polymer nanocomposites is a combination of the nanofiller and interfacial regions. In the polymer matrix of the nanocomposite, carbon nanotubes form ring-like structures. Their radius depends heavily on the volume content of the nanofiller. Therefore, the structural reinforcing element of polymer/carbon nanotube nanocomposites can be considered as ring-like formations of carbon nanotubes coated with an interfacial layer. Their structure and properties differ from the characteristics of the bulk polymer matrix.
According to this definition, the effective radius of the ring-like formations increases by the thickness of the interfacial layer. In turn, the level of interfacial adhesion between the polymer matrix and the nanofiller is uniquely determined by the radius of the specified carbon nanotube formations. For the considered nanocomposites, the elastomeric matrix has a higher degree of reinforcement compared to the glassy matrix, due to the thicker interfacial layer. It was shown that the ring-like nanotube formations could be successfully modelled as a structural analogue of macromolecular coils of branched polymers. This makes it possible to assess the effective (true) level of anisotropy of this nanofiller in the polymer matrix
of the nanocomposite. When the nanofiller content is constant, this level, characterised by the aspect ratio of the nanotubes, uniquely determines the degree of reinforcement of the nanocomposites

Downloads

Download data is not yet available.

Author Biographies

Georgii V. Kozlov, Kabardino-Balkarian State University named after H. M. Berbekov, 173 Chernyshevsky str., Nalchik 360004, Kabardafterino-Balkarian Republic, Russian Federation

Senior Research Fellow,
Kabardino-Balkarian State University named after H.
M. Berbekov, Nalchik, Kabardino-Balkarian Republic,
Russian Federation; e-mail: i_dolbin@mail.ru

Gasan M. Magomedov, Dagestan State Pedagogical University, 57 Yaragskogo ul., Makhachkala 367003, the Republic of Dagestan, Russian Federation

DSc in Physics and
Mathematics, Professor, Head of the Department of
Physics and Teaching Methods, Dagestan State
Pedagogical University, Makhachkala, the Republic of
Dagestan, Russian Federation; e-mail: gasan_mag@mail.ru

Gusein M. Magomedov, Dagestan State Pedagogical University, 57 Yaragskogo ul., Makhachkala 367003, the Republic of Dagestan, Russian Federation

PhD in Physics and
Mathematics, Associate Professor, Professor at the
Department of Professional Pedagogy, Technology,
and Teaching Methods, Dagestan State Pedagogical
University, Makhachkala, the Republic of Dagestan,
Russian Federation; e-mail: mgusein@mail.ru

Igor V. Dolbin, Kabardino-Balkarian State University named after H. M. Berbekov, 173 Chernyshevsky str., Nalchik 360004, Kabardafterino-Balkarian Republic, Russian Federation

PhD in Chemistry, Associate
Professor, Department of Organic Chemistry and High-
Molecular Compounds, Kabardino-Balkarian State
University named after H. M. Berbekov, Nalchik,
Kabardino-Balkarian Republic, Russian Federation;
e-mail: i_dolbin@mail.ru

References

Schaefer D. W., Justice R. S. How nano are nanocomposites? Macromolecules. 2007;40(24): 8501–8517. https://doi.org/10.1021/ma070356w

Atlukhanova L. B., Kozlov G. V Fizikokhimiya nanokompozitov polimer-uglerodnye nanotrubki [Physics and chemistry of polymer/carbon nanotube nanocomposites]. Moscow: Sputnik + Publ.; 2020. 292 p. (In Russ.)

Cho H., Lee H., Oh E., Lee S.-H., Park H. J., Yoon S.-B., Lee C.-H., Kwak G.-H., Lee W. J., Kim J., Kim J. E., Lee K.-H. Hierarhical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching. Carbon. 2018;136: 409–416. https://doi.org/10.1016/j.carbon.2018.04.071

Ata M. S., Poon R., Syed A. M., Milne J., Zhitomirsky I. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes. Carbon. 2018;130: 584 598. https://doi.org/10.1016/j.carbon.2018.01.066

Li H., Branicio P. S. Ultra-low friction of graphene/C60/graphene coatings for realistic rough surfaces. Carbon. 2019;152: 727–737. https://doi.org/10.1016/j.carbon.2019.06.020

Tan W., Stallard J. C., Smail F. R., Boies A. M., Fleck N. A. The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon. 2019;150: 489–504. https://doi.org/10.1016/j.carbon.2019.04.118

Smail F., Boies A., Windle A. Direct spinning of CNT fibres: Past, present and future scale up. Carbon. 2019;152: 218–232. https://doi.org/10.1016/j.carbon.2019.05.024

Zhang S., Hao A., Nguen N., Oluwalowo A., Liu Zh., Dessureault Y., Park J. G., Liang R. Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon. 2019;144: 628–638. https://doi.org/10.1016/j.carbon.2018.12.091

Schaefer D. W., Zhao J., Dowty H., Alexander M., Orler E. B. Carbon nanofibre reinforcement of soft materials. Soft Matter. 2008;4(10): 2071–2078. https://doi.org/10.1039/b805314f

Jeong W., Kessler M. R. Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadiene composites. Chemistry of materials. 2008;20(22): 7060–7068. https://doi.org/10.1021/cm8020947

Bridge B. Theoretical modeling of the critical volume fraction for percolation conductivity in fibreloaded conductive polymer composites. Journal of Materials Science Letters. 1989;8(2): 102–103. https://doi.org/10.1007/BF00720265

Mikitaev A. K., Kozlov G. V., Zaikov G. E. Polymer Nanocomposites: Variety of Structural Forms and Applications. New York: Nova Science Publishers, Inc.; 2008. 319 p.

Li W., Zhao J., Xue Y., Ren X., Zhang X., Li Q. Merge multiple carbon nanotube fibers into a robust yarn. Carbon. 2019;145: 266–272. https://doi.org/10.1016/j.carbon.2019.01.054

Qiu L., Guo P., Yang X., Ouyang Y., Feng Y., Zhang X., Zhao J., Zhang X., Li Q. Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon. 2019;145: 650–657. https://doi.org/10.1016/j.carbon.2019.01.074

Liang X., Gao Y., Duan J., Liu Z., Fang Sh., Baughman R.H., Jiang L., Cheng Q. Enhancing the strength, toughness, and electrical conductivity of twist-spun carbon nanotube yarns in π bridging. Carbon. 2019;150: 268–274. https://doi.org/10.1016/j.carbon.2019.05.023

Coleman J. N., Cadek M., Ryan K. P., Fonseca A., Nady J. B., Blau W. J., Ferreira M. S. Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial regions. Experiment and modeling. Polymer. 2006;47(23): 8556–8561. https://doi.org/10.1016/j.polymer.2006.10.014

Schadler L. S., Giannaris S. C., Ajayan P. M. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters. 1998;73(26): 3842–3844. https://doi.org/10.1063/1.122911

Zhong-can O.-Y., Su Z.-B., Wang C.-L. Coil formation in multishell carbon nanotubes: competition between curvature elasticity and interlayer adhesion. Physical Review Letters. 1997;78(21): 4055–4058. https://doi.org/10.1103/physrevlett.78.4055

Kozlov G. V., Dolbin I. V., Zaikov G. E. (eds.) The fractal physical chemistry of polymer solutions and melts. Toronto, New Jersey: Apple Academic Press; 2013. 316 p. https://doi.org/10.1201/b16305

Moniruzzaman M., Winey K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39(16): 5194–5205. https://doi.org/10.1021/ma060733p

Published
2021-06-04
How to Cite
Kozlov, G. V., Magomedov, G. M., Magomedov, G. M., & Dolbin, I. V. (2021). The structure of carbon nanotubes in a polymer matrix. Condensed Matter and Interphases, 23(2), 223-228. https://doi.org/10.17308/kcmf.2021.23/3433
Section
Original articles