The structure of carbon nanotubes in a polymer matrix
Abstract
We carried out an analytical structural analysis of interfacial effects and differences in the reinforcing ability of carbon nanotubes for polydicyclopentadiene/carbon nanotube nanocomposites with elastomeric and glassy matrices. In general, it showed that the reinforcing (strengthening) element of the structure of polymer nanocomposites is a combination of the nanofiller and interfacial regions. In the polymer matrix of the nanocomposite, carbon nanotubes form ring-like structures. Their radius depends heavily on the volume content of the nanofiller. Therefore, the structural reinforcing element of polymer/carbon nanotube nanocomposites can be considered as ring-like formations of carbon nanotubes coated with an interfacial layer. Their structure and properties differ from the characteristics of the bulk polymer matrix.
According to this definition, the effective radius of the ring-like formations increases by the thickness of the interfacial layer. In turn, the level of interfacial adhesion between the polymer matrix and the nanofiller is uniquely determined by the radius of the specified carbon nanotube formations. For the considered nanocomposites, the elastomeric matrix has a higher degree of reinforcement compared to the glassy matrix, due to the thicker interfacial layer. It was shown that the ring-like nanotube formations could be successfully modelled as a structural analogue of macromolecular coils of branched polymers. This makes it possible to assess the effective (true) level of anisotropy of this nanofiller in the polymer matrix
of the nanocomposite. When the nanofiller content is constant, this level, characterised by the aspect ratio of the nanotubes, uniquely determines the degree of reinforcement of the nanocomposites
Downloads
References
Schaefer D. W., Justice R. S. How nano are nanocomposites? Macromolecules. 2007;40(24): 8501–8517. https://doi.org/10.1021/ma070356w
Atlukhanova L. B., Kozlov G. V Fizikokhimiya nanokompozitov polimer-uglerodnye nanotrubki [Physics and chemistry of polymer/carbon nanotube nanocomposites]. Moscow: Sputnik + Publ.; 2020. 292 p. (In Russ.)
Cho H., Lee H., Oh E., Lee S.-H., Park H. J., Yoon S.-B., Lee C.-H., Kwak G.-H., Lee W. J., Kim J., Kim J. E., Lee K.-H. Hierarhical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching. Carbon. 2018;136: 409–416. https://doi.org/10.1016/j.carbon.2018.04.071
Ata M. S., Poon R., Syed A. M., Milne J., Zhitomirsky I. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes. Carbon. 2018;130: 584 598. https://doi.org/10.1016/j.carbon.2018.01.066
Li H., Branicio P. S. Ultra-low friction of graphene/C60/graphene coatings for realistic rough surfaces. Carbon. 2019;152: 727–737. https://doi.org/10.1016/j.carbon.2019.06.020
Tan W., Stallard J. C., Smail F. R., Boies A. M., Fleck N. A. The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon. 2019;150: 489–504. https://doi.org/10.1016/j.carbon.2019.04.118
Smail F., Boies A., Windle A. Direct spinning of CNT fibres: Past, present and future scale up. Carbon. 2019;152: 218–232. https://doi.org/10.1016/j.carbon.2019.05.024
Zhang S., Hao A., Nguen N., Oluwalowo A., Liu Zh., Dessureault Y., Park J. G., Liang R. Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon. 2019;144: 628–638. https://doi.org/10.1016/j.carbon.2018.12.091
Schaefer D. W., Zhao J., Dowty H., Alexander M., Orler E. B. Carbon nanofibre reinforcement of soft materials. Soft Matter. 2008;4(10): 2071–2078. https://doi.org/10.1039/b805314f
Jeong W., Kessler M. R. Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadiene composites. Chemistry of materials. 2008;20(22): 7060–7068. https://doi.org/10.1021/cm8020947
Bridge B. Theoretical modeling of the critical volume fraction for percolation conductivity in fibreloaded conductive polymer composites. Journal of Materials Science Letters. 1989;8(2): 102–103. https://doi.org/10.1007/BF00720265
Mikitaev A. K., Kozlov G. V., Zaikov G. E. Polymer Nanocomposites: Variety of Structural Forms and Applications. New York: Nova Science Publishers, Inc.; 2008. 319 p.
Li W., Zhao J., Xue Y., Ren X., Zhang X., Li Q. Merge multiple carbon nanotube fibers into a robust yarn. Carbon. 2019;145: 266–272. https://doi.org/10.1016/j.carbon.2019.01.054
Qiu L., Guo P., Yang X., Ouyang Y., Feng Y., Zhang X., Zhao J., Zhang X., Li Q. Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon. 2019;145: 650–657. https://doi.org/10.1016/j.carbon.2019.01.074
Liang X., Gao Y., Duan J., Liu Z., Fang Sh., Baughman R.H., Jiang L., Cheng Q. Enhancing the strength, toughness, and electrical conductivity of twist-spun carbon nanotube yarns in π bridging. Carbon. 2019;150: 268–274. https://doi.org/10.1016/j.carbon.2019.05.023
Coleman J. N., Cadek M., Ryan K. P., Fonseca A., Nady J. B., Blau W. J., Ferreira M. S. Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial regions. Experiment and modeling. Polymer. 2006;47(23): 8556–8561. https://doi.org/10.1016/j.polymer.2006.10.014
Schadler L. S., Giannaris S. C., Ajayan P. M. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters. 1998;73(26): 3842–3844. https://doi.org/10.1063/1.122911
Zhong-can O.-Y., Su Z.-B., Wang C.-L. Coil formation in multishell carbon nanotubes: competition between curvature elasticity and interlayer adhesion. Physical Review Letters. 1997;78(21): 4055–4058. https://doi.org/10.1103/physrevlett.78.4055
Kozlov G. V., Dolbin I. V., Zaikov G. E. (eds.) The fractal physical chemistry of polymer solutions and melts. Toronto, New Jersey: Apple Academic Press; 2013. 316 p. https://doi.org/10.1201/b16305
Moniruzzaman M., Winey K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules. 2006;39(16): 5194–5205. https://doi.org/10.1021/ma060733p
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.