Double molybdates of silver and monovalent metals
Abstract
The Ag2MoO4–Cs2MoO4 system was studied by powder X-ray diffraction, the formation of a new double molybdate CsAg3(MoO4)2 was established, its single crystals were obtained, and its structure was determined. CsAg3(MoO4)2 (sp. gr. P3¯, Z = 1, a = 5.9718(5), c = 7.6451(3) Å, R = 0.0149) was found to have the structure type of Ag2BaMn(VO4)2. The structure is based on glaserite-like layers of alternating MoO4 tetrahedra and Ag1O6 octahedra linked by oxygen vertices, which are connected into a whole 3D framework by Ag2O4 tetrahedra. An unusual feature of the Ag2 atom environment is its location almost in the centre of an oxygen face of the Ag2O4 tetrahedron. Caesium atoms are in cuboctahedral coordination (CN = 12).
We determined the structures of the double molybdate of rubidium and silver obtained by us previously and a crystal from the solid solution based on the hexagonal modification of Tl2MoO4, which both are isostructural to glaserite K3Na(SO4)2 (sp. gr. P3¯m1). According to X-ray structural analysis data, both crystals have nonstoichiometric compositions Rb2.81Ag1.19(MoO4)2 (a = 6.1541(2), c = 7.9267(5) Å, R = 0.0263) and Tl3.14Ag0.86(MoO4)2 (a = 6.0977(3), c = 7.8600(7) Å, R = 0.0174). In the case of the rubidium compound, the splitting of the Rb/Ag position was revealed for the first time am ong molybdates. Both structures are based on layers of alternating MoO4 tetrahedra and AgO6 or (Ag, Tl)O6 octahedra linked by oxygen vertices. The coordination numbers of rubidium and thallium are 12 and 10
Downloads
References
Fan W., He Y., Long L., Gao Y., Liu F., Liu J. Multiplexed excitations KGd1−xEux(MoO4)2 red-emitting phosphors with highly Eu3+ doping for white LED application. Journal of Materials Science: Materials in Electronics. 2021;32(5): 6239–6248. https://doi.org/10.1007/s10854-021-05339-1
Wang Y., Song M., Xiao L., Li Q. Upconversion luminescence of Eu3+ and Sm3+ single-doped NaYF4 and NaY(MoO4)2. Journal of Luminescence. 2021;238: 118203. https://doi.org/10.1016/j.jlumin.2021.118203
Morozov V. A., Lazoryak B. I., Shmurak S. Z., Kiselev A. P., Lebedev O. I., Gauquelin N., Verbeeck J., Hadermann J., Van Tendeloo G. Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors. Chemistry of Materials. 2014;26(10): 3238−3248. https://doi.org/10.1021/cm500966g
Guo С., Gao F., Xu Y., Liang L., Shi F. G., Yan B. Efficient red phosphors Na5Ln(MoO4)4: Eu3+ (Ln = La, Gd and Y) for white LEDs. Journal of Physics D: Applied Physics. 2009; 42(9):095407. https://doi.org/10.1088/0022-727/42/9/095407
Zhao C., Yin X., Huang F., Hang Y. Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M = Li, Na) red phosphors. Journal of Solid State Chemistry. 2011;184(12): 3190–3194. https://doi.org/10.1016/j.jssc.2011.09.025
Pandey I. R., Karki S., Daniel D. J., Kim H. J., Kim Y. D., Lee M. H., Pavlyuk A. A., Trifonov V. A. Crystal growth, optical, luminescence and scintillation characterization of Li2Zn2(MoO4)3 crystal. Journal of Alloys and Compounds. 2021;1860: 158510. https://doi.org/10.1016/j.jallcom.2020.158510 0925-8388
Isupov V. A. Binary molybdates and tungstates of mono and trivalent elements as possible ferroelastics and ferroelectrics. Ferroelectrics. 2005;321(1): 63–90. https://doi.org/10.1080/00150190500259699
Isupov V. A. Ferroelectric and ferroelastic phase transitions in molybdates and tungstates of monovalent and bivalent elements. Ferroelectrics. 2005;322(1): 83–114. https://doi.org/10.1080/00150190500315574
Tsyrenova G. D., Pavlova E. T., Solodovnikov S. F., Popova N. N., Kardash T. Yu., Stefanovich S. Yu., Gudkova I. A., Solodovnikova Z. A., Lazoryak B. I. New ferroelastic K2Sr(MoO4)2: synthesis, phase transitions, crystal and domain structures, ionic conductivity. Journal of Solid State Chemistry. 2016;237: 64−71. https://doi.org/10.1016/j.jssc.2016.01.011
Savina A. A., Solodovnikov S. F., Basovich O. M., Solodovnikova Z. A., Belov D. A., Pokholok K. V., Gudkova I. A., Stefanovich S. Yu., Lazoryak B. I., Khaikina E. G. New double molybdate Na9Fe(MoO4)6: synthesis, structure, properties. Journal of Solid State Chemistry. 2013;205: 149–153. https://doi.org/10.1016/j.jssc.2013.07.007
Savina A. A., Morozov V. A., Buzlukov A. L., Arapova I. Yu., Stefanovich S. Yu., Baklanova Ya. V., Denisova T. A., Medvedeva N. I., Bardet M., Hadermann J., Lazoryak B. I., Khaikina E. G. New solid electrolyte Na9Al(MoO4)6: structure and Na+ ion conductivity. Chemistry of Materials. 2017;29(20): 8901–8913. https://doi.org/10.1021/acs.chemmater.7b03989
Solodovnikov S. F., Solodovnikova Z. A., Zolotova E. S., Yudin V. N., Gulyaeva O. A., Tushinova Y. L., Kuchumov B. M. Nonstoichiometry in the systems Na2MoO4–MMoO4 (M = Co, Cd), crystal structures of Na 3 . 3 6Co 1 . 3 2 (MoO4)3, Na3. 13Mn1. 43(MoO4)3 and Na3.72Cd1.14(MoO4)3, crystal chemistry, compositions and ionic conductivity of alluaudite-type double molybdates and tungstates. Journal of Solid State Chemistry. 2017;253: 121–128. https://doi. org/10.1016/j.jssc.2017.05.031
Medvedeva N. I., Buzlukov A. L., Skachkov A. V., Savina A. A., Morozov V. A., Baklanova Ya. V., Animitsa I. E., Khaikina E. G., Denisova T. A., Solodovnikov S. F. Mechanism of sodium-ion diffusion in alluaudite-type Na5Sc(MoO4)4 from NMR experiment and ab initio calculations. Journal of Physical Chemistry C. 2019;123(8): 4729. https://doi.org/10.1021/acs.jpcc.8b11654
Chen S., Duan H., Zhou Z., Fan Q., Zhao Y., Dong Y. Lithiated bimetallic oxide, Li3Fe(MoO4)3, as a high-performance anode material for lithium-ion batteries and its multielectron reaction mechanism. Journal of Power Sources. 2020;476: 228656. https://doi.org/10.1016/j.jpowsour.2020.228656
Tamboli A. M., Tamboli M. S., Praveen C. S., Dwivedi P. K., Karbhal I., Gosavi S. W., Shelke M. V., Kale B. B. Architecture of NaFe(MoO4)2 as a novel anode material for rechargeable lithium and sodium ion batteries. Applied Surface Science. 2021;559: 149903. https://doi.org/10.1016/j.apsusc.2021.149903
Wang L., He Y., Mu Y., Wu B., Liu M., Zhao Y., Lai X., Bi J., Gao D. Sol-gel driving LiFe(MoO4)2 microcrystals: high capacity and superior cycling stability for anode material in lithium ion batteries. Electronic Materials Letters. 2019;15(2): 186–191. https://doi.org/10.1007/s13391-018-00115-6
Mikhailova D., Sarapulova A., Voss A., Thomas A., Oswald S., Gruner W., Trots D. M., Bramnik N. N., Ehrenberg H. Li3V(MoO4)3: A new material for both Li extraction and insertion. Chemistry of Materials. 2010;22(10): 3165–3173. https://doi.org/10.1021/cm100213a
Begam K. M., Prabaharan S. R. S. Improved cycling performance of nano-composite Li2Ni2(MoO4)3 as a lithium battery cathode material. Journal of Power Sources. 2006;159(1): 319–322. https://doi.org/10.1016/j.jpowsour.2006.04.133
Serdtsev A. V., Medvedeva N. I. Ab initio insights into Na-ion diffusion and intercalation mechanism in alluaudite Na2Mn2(MoO4)3 as cathode material for sodium-ion batteries. Journal of Alloys and Compounds. 2019;808: 151667. https://doi.org/10.1016/j.jallcom.2019.151667
Voron’ko Yu. K., Zharikov E. V., Lis D. A., Popov A. V., Smirnov V. A., Subbotin K. A., Khromov M. N., Voronov V. V. Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: a new promising laser material. Optics and Spectroscopy. 2008;105(4): 538–546. https://doi.org/10.1134/S0030400X08100081
Gao S., Zhu Z., Wang Y., You Z., Li J., Wang H., Tu C. Growth and spectroscopic investigations of a new laser crystal Yb3+-doped Na2Gd4(MoO4)7. Optical Materials. 2013;36(2): 505–508. https://doi.org/10.1016/j.optmat.2013.10.018
Loiko P., Pavlyuk A., Slimi S., Solé R. M., Salem E. B., Dunina E., Kornienko A., Camy P., Griebner U., Petrov V., Díaz F., Aguiló M., Mateos X. Growth, spectroscopy and laser operation of monoclinic Nd:CsGd(MoO4)2 crystal with a layered structure. Journal of Luminescence. 2021;231: 117793. https://doi.org/10.1016/j.jlumin.2020.117793
Iparraguirre I., Balda R., Voda M., Al-Saleh M., Fernandez J. Infrared-to-visible upconversion in K5Nd(MoO4)4 stoichiometric laser crystal. Journal of the Optical Society of America B. 2002;19(12): 2911–2920. https://doi.org/10.1364/JOSAB.19.002911
Voron’ko Y. K., Subbotin K. A., Shukshin V. E., Lis D. A., Ushakov S. N., Popov A., Zharikov E. V. Growth and spectroscopic investigations of Yb3+- doped NaGd(MoO4)2 and NaLa(MoO4)2: new promising laser crystals. Optical Materials. 2006;29(2-3): 246−252. https://doi.org/10.1016/j.optmat.2005.09.004
Hoermann F. Beitrag zur Kenntnis der Molybdate und Wolframate. Die binären Systeme: Li2MoO4–MoO3, Na2MoO4–MoO3, K2MoO4–MoO3, Li2WO4–WO3, Na2WO4–WO3, K2WO4–WO3, Li2MoO4– Na2MoO4, Li2WO4–Na2WO4, Li2MoO4–K2MoO4. Zeitschrift für Anorganische und Allgemeine Chemie. 1929;177(1): 145–186. https://doi.org/10.1002/zaac.19291770117
Bergman A. G., Kislova A. I., Korobka E. I. Issledovanie dvoinoi vzaimnoi sistemy diagonal’nopoyasnogo tipa iz sul’fatov i molibdatov litiya i kaliya [Investigation of the double reciprocal system of the diagonal-belt type of lithium and potassium sulfates and molybdates]. Zhurnal Obshhej Khimii. 1954;24(5): 1127–1135. (In Russ.)
Samuseva R. G., Bobkova M. V., Plyushchev V. E. Systems Li2MoO4–Rb2MoO4 and Li2MoO4–Cs2MoO4. Zhurnal Neorganicheskoj Khimii (Russian Journal of Inorganic Chemistry. 1969;14(11): 3140–3142. (In Russ.)
Klevtsova R. F., Klevtsov P. V., Aleksandrov K. S. Synthesis and crystal structure of CsLiMoO4. Doklady AN SSSR. 1980;255(6): 1379–1382. Available at: http://www.mathnet.ru/links/615f6831862802e4f119568c63999bbe/dan44135.pdf (In Russ.)
Okada K., Ossaka J. Crystal data and phase transitions of KLiWO4 and KLiMoO4. Journal of Solid State Chemistry. 1981;37(3): 325–327. https://doi.org/10.1016/0022-4596(81)90494-1
Aleksandrov K. S. , Anistratov A. T. , Melnikova S. V., Klevtsova P. F. Ferroelectricity in caesium lithium molybdate CsLiMoO4 and related crystals CsLiWO4 and RbLiMoO4. Ferroelectrics. 1981; 36(1):399–402. https://doi.org/10.1080/00150198108218138
Kruglik A. I., Klevtsova P. F., Aleksandrov K. S. Crystal structure of new ferroelectric RbLiMoO4. Doklady AN SSSR. 1983;271(6): 1388–1391. Available at: http://www.mathnet.ru/links/b19a6f8fab3efdda809632d278dc8cb9/dan46252.pdf (In Russ.)
Melnikova S. V., Voronov V. N., Klevtsov P. V. Phase transitions in RbLiMoO4. Kristallografiya. 1986;31(2): 402–404. (In Russ.)
Ding Y., Hou N., Chen N., Xia Y. Phase diagrams of Li2MoO4–Na2MoO4 and Na2MoO4–K2MoO4 systems. Rare metals. 2006;25(4): 316–320. https://doi.org/10.1016/S1001-0521(06)60060-0
Bergman A. G., Korobka E. I. Fusibility diagram of a ternary reciprocal system of lithium and sodium sulfates and molybdates. Zhurnal Neorganicheskoj Khimii (Russian Journal of Inorganic Chemistry). 1959;4(1): 110–116. (In Russ.)
Fabry J., Petricek V., Vanek P., Cisarova I. Phase transition in K3Na(MoO4)2 and determination of the twinned structures of K3Na(MoO4)2 and K2.5Na1.5(MoO4)2 at room temperature. Acta Crystallographica Section B.
;53(4): 596–603. https://doi.org/10.1107/s0108768197002164
Gulyaeva O. A., Solodovnikova Z. A., Solodovnikov S. F., Yudin V. N., Zolotova E. S., Komarov V. Yu. Subsolidus phase relations and structures of solid solutions in the systems K2MoO4–Na2MoO4–MMoO4 (M = Mn, Zn). Journal of Solid State Chemistry. 2019;272: 148–156. https://doi.org/10.1016/j.jssc.2019.02.010
Mokhosoev M. V. , Khal’baeva K. M. , Khaikina E. G., Ogurtsov A. M. Double sodiumrubidium molybdates. Zhurnal Neorganicheskoj Khimii (Russian Journal of Inorganic Chemistry). 1990;35(8): 2126–2129. Available at: https://elibrary.ru/item.asp?id=22232925 (In Russ.)
Bai C., Lei C., Pan S., Wang Y., Yang Z., Han S., Yu H., Yang Y., Zhang F. Syntheses, structures and haracterizations of Rb3Na(MO4)2 (M = Mo, W) crystals. Solid State Science. 2014;33: 32–37. https://doi.org/10.1016/j.solidstatesciences.2014.04.011
Zolotova E. S., Solodovnikova Z. A., Yudin V. N., Solodovnikov S. F., Khaikina E. G., Basovich O. M., Korolkov I. V., Filatova I. Yu. Phase relations in the Na2MoO4–Cs2MoO4 and Na2MoO4–Cs2MoO4–ZnMoO4 systems, crystal structures of Cs3Na(MoO4)2 and Cs3NaZn2(MoO4)4. Journal of Solid State Chemistry. 2016;233: 23–29. https://doi.org/10.1016/j.jssc.2015.10.008
Okada K., Ossaka J. Structures of potassium sodium sulphate and tripotassium sodium disulphate. Acta Crystallographica Section B. 1980;36(4): 919–921. https://doi.org/10.1107/S0567740880004852
Belyaev I. N., Doroshenko S. S. Study of the interaction of sulfates and molybdates of lithium and silver in melts. Zhurnal Neorganicheskoj Khimii (Russian Journal of Inorganic Chemistry).1956;26(7): 1816–1820.
(In Russ.)
Khal’baeva K. M., Khaikina E. G., Basovich O. M. Phase equilibria in lithium-silver(sodium)-bismuth molybdate systems. Russian Journal of Inorganic Chemistry. 2005;50(8): 1282–1284.
Belyaev I. N., Doroshenko A. K. Exchange decomposition in a reciprocal system of sodium and silver sulfates and molybdates in melts. Zhurnal Obshhej Khimii. 1954;24: 427–432. (In Russ.)
Zhou D., Li J., Pang L. X., Wang D. W., Reaney I. M. Novel water insoluble (NaxAg2–x)MoO4 (0 ≤ x ≤ 2) microwave dielectric ceramics with spinel structure sintered at 410 degrees. Journal of Materials Chemistry. C. 2017;5(24): 6086–6091. https://doi.org/10.1039/c7tc01718a
Rulmont A., Tarte P., Foumakoye G., Fransolet A.M., Choisnet J. The disordered spinel NaAgMoO4 and its high-temperature, ordered orthorhombic polymorph. Journal of Solid State Chemistry. 1988;76(1): 18–25. https://doi.org/10.1016/0022-4596(88)90188-0
Zhou D., Pang L. X., Qi Z. M., Jin B. B., Yao X. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal. Scientific Reports. 2014;4(1): 5980. https://doi.org/10.1038/srep05980
Arkhincheeva S. I., Bazarova J. G., Munkueva S. D. Solid-phase interaction of thallium and silver molybdates (tungstates). Vestnik BGU. Khimiya (BSU bulletin. Chemistry). 2004;(1): 43–47. (In Russ.)
Grossman V. G., Bazarov B. G., Bazarova J. G. Phase formation in Tl2MoO4–Ag2MoO4 and Tl2WO4–Ag2WO4 systems. Izvestia Vuzov. Prikladnaya Khimiya i Biotekhnologiya (Proceedings of Universitets. Applied Сhemistry and Biotechnology). 2018;8(3): 142–147. https://doi.org/10.21285/2227-2925-2018-8-3-142-147 (In Russ.)
Kadyrova Yu. M., Solodovnikov S. F., Solodovnikova Z. A., Basovich O. M., Spiridonova T. S., Khaikina E. G. New silver-rubidium double molybdate. Vestnik BGU (BSU bulletin. Chemistry. Physics). 2015;3: 21–25. (In Russ.)
Spiridonova T. S., Solodovnikov S. F., Savina A. A., Solodovnikova Z. A., Stefanovich S. Yu., Lazoryak B. I., Korolkov I. V., Khaikina E. G. Synthesis, crystal structures and properties of the new compounds K7−xAg1+x(XO4)4 (X = Mo, W). Acta Crystallographica Section C. 2017;73(12): 1071–1077. https://doi.org/10.1107/s2053229617015674
Friese K., Madariaga G., Breczewski T. T12MoO4 at 350 K. Acta Crystallographica Section C. 1999;55(11): 1753–1755. https://doi.org/10.1107/S0108270199008616
Sheldrick G. M. SHELX97, Release 97-2. –Göttingen, Germany: Univ. of Göttingen, 1997. 53. Rettich R., Müller-Buschbaum Hk., Zur Kristallchemie der Silber-Mangan-Oxovanadate Ag2BaMnV2O8 und (AgCa2)Mn2(VO4)3. Zeitschrift für Naturforschung. 1998;53b: 291–295. Available at: https://zfn.mpdl.mpg.de/data/Reihe_B/53/ZNB-1998-53b-0291.pdf
Spiridonova T. S., Solodovnikov S. F., Savina A. A., Kadyrova Yu. M., Solodovnikova Z. A., Yudin V. N., tefanovich S. Yu., Kotova I. Yu., Khaikina E. G., Komarov V. Yu. Rb9–xAg3+xSc2(WO4)9: a new glaserite-related structure type, rubidium disorder, ionic conductivity. Acta Crystallographica Section B. 2020;76(1): 28–37. ttps://doi.org/10.1107/S2052520619015270
Fourquet J. L., Jacoboni C., de Pape R. Les pyrochlores AI 2X6: mise en evidence de l’occupation parlecation AI denouvel lespositions cristallographiques dans le groupe d’espace Fd3m. Materials Research Bulletin. 1973;8(4): 393–404. https://doi.org/10.1016/0025-5408(73)90043-3
Thorogood G. J., Kennedy B. J., Peterson V. K., Elcombe M. M., Kearley G. J., Hanna J. V., Luca V. Anomalous lattice parameter increase in alkali earth aluminium substituted tungsten defect pyrochlores. Journal of Solid State Chemistry. 2009;182(3): 457–464. https://doi.org/10.1016/j.jssc.2008.11.014
Streltsov V. A., Nordborg J., Albertsson J. Synchrotron X-ray analysis of RbTiOAsO4. Acta Crystallographica Section B. 2000;56(5): 785–792. https://doi.org/10.1107/S0108768100006285
Belokoneva E. L., Knight K. S., David W. I. F., Mill B. V. Structural phase transitions in germanate analogues of KTiOPO4 investigated by high-resolution neutron powder diffraction. Journal of Physics: Condensed Matter. 1997;9(19): 3833–3851. https://doi.org/10.1088/0953-8984/9/19/005
Kalinin V. B., Golubev A. M. Splitting of cationic positions in crystal structures with special electrophysical properties. Kristallografiya (Soviet Physics. Crystallography). 1990;35(6): 1472–1478. (In Russ.)
Astaf’ev A. V., Bosenko A. A., Voronkova V. I., Krasheninnikova M. A. , Stefanovich S. Yu. , Yanovskij V. K. Dielectric, optical properties and ionic conductivity of TlNbWO6 and RbNbWO6 crystals. Kristallografiya (Soviet Physics. Crystallography). 1986;31(5): 968–973. (In Russ.)
Serdtsev A. V., Suetin D. V., Solodovnikov S. F., Gulyaeva O. A., Medvedeva N. I. Electronic structure and sodium-ion diffusion in glaserite-type A3−хNa1+х(MoO4)2 (A = Cs, K) studied with first-principles calculations. Solid State Ionics. 2020;357: 115484. https://doi.org/10.1016/j.ssi.2020.115484
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.