Technological features of the method of liquid-phase epitaxy when growing InP/GaInAsP heterostructures
Abstract
Semiconductor devices of quantum electronics based on InP/GaInAsP heterostructures require the creation of non-defective chips for emitting devices and photodetectors. The production of such chips is impossible without a thorough technological study of the growth processes of epitaxial structures. One of the important problems in relation to the growth of such structures is the growth defects associated with the process of dissociation of indium phosphide on the surface during their growth. The aim of the work was the investigation of the process and mechanism of destruction (dissociation) of the surface of indium phosphide substrates in the range of growth temperatures of structures, as well as the study of methods and
techniques that allow minimize the process of dissociation of surface of indium phosphide.
The work provides studies of the growth processes of InP/GaInAsP heterostructures, from the liquid phase, taking into account the degradation processes of the growth surface and the mechanisms for the formation of dissociation defects.
The schemes of the dissociation process of the InP on the surface of the substrate and the formation of the defective surface of the substrate were analysed. At the same time, technological methods allowing to minimize the dissociation of the surface compound during the process of liquid-phase epitaxy were shown. The original design of a graphite cassette allowing to minimize the dissociation of the indium phosphide substrate in the process of liquid-phase epitaxy was proposed
Downloads
References
Uspekhi v khimii i khimicheskoi tekhnologii [Advances in chemistry and chemical technology]. In: Collection of scientific papers. 2016; XXX.6(175). Moscow: RKhTU im. D. I. Mendeleeva Publ.; 2016. 118 p. (In Russ.)
Klyndyuk A. I. Poverkhnostnye yavleniya i dispersnye sistemy: uchebnoe posobie dlya studentov khimiko-tekhnologicheskikh spetsial’nostei [Surface phenomena and dispersed systems: a textbook for students of chemical and technological specialties]. Minsk: BGTU Publ.; 2011. 317 p. ISBN 978-985-530-054-1. (In Russ.)
Saidov A. S., Usmonov Sh. N., Saidov M. S. Liquid-phase epitaxy of the (Si2)1−x−y(Ge2)x(GaAs)y substitutional solid solution (0 ≤ x ≤ 0.91, 0 ≤ y ≤ 0.94) and their electrophysical properties. Semiconductors. 2015;49(4): 547–550. https://doi.org/10.1134/s106378261504020x
Alfimova D. L., Lunin L. S., Lunina M. L., Kazakova A. E., Pashchenko A. S. Liquid-phase synthesis and properties of constant lattice parameter AlGaInAsP solid solutions on indium phosphide substrates. Inorganic Materials. 2019;55(6): 533–541. https://doi.org/10.1134/S0020168519060013
Vasil’ev M. G., Vasil’ev A. M., Izotov A. D., Shelyakin A. A. Preparation of indium phosphide substrates for epilayer growth. Inorganic Materials. 2018;54(11): 1109–1112. https://doi.org/10.1134/S0020168518110158
Leshko A. Yu., Lyutetskii A. V., Pikhtin N. A., Slipchenko S. O., Sokolova Z. N., Fetisova N. V., Golikova E. G., Ryaboshtan Yu. A., Tarasov I. S. High power single-mode (l=1.3–1.6 μm) laser diodes based on quantum well InGaAsP/InP heterostructures. Semiconductors. 2002;36(11): 1308–1314. https://doi.org/10.1134/1.1521236
Dikareva N. V., Zvonkov B. N., Samartsev I. V., Nekorkin S. M., Baidus N. V., Dubinov A. A. GaAs-based laser diode with InGaAs waveguide quantum wells. Semiconductors. 2019;53(12): 1709–1711. https://doi.org/10.1134/S1063782619160085
Ladugin M. A. Gultikov N. V., Marmalyuk A. A., Konyaev V. P., Solov’eva A. V. Continuous-wave laser diodes based on epitaxially integrated InGaAs/AlGaAs/GaAs heterostructures. Quantum Electronics. 2019;49(10): 905–908. https://doi.org/10.1070/qel17089
Zhuravlev K. S., Gilinskii A. M., Chistokhin I. B., Valisheva N. A., Dmitriev D. V., Toropov A. I., Aksenov M. S., Chizh A. L., Mikitchuk K. B. Moshchnye SVCh-fotodiody na osnove geterostruktur InAlAs/ InGaAs, sinteziruemykh metodom molekulyarnoluchevoi epitaksii [High-power microwave photodiodes based on InAlAs / InGaAs eterostructures synthesized by molecular beam epitaxy]. Zhurnal tekhnicheskoi fiziki (Technical Physics). 2021;91(7): 1158–1163. https://doi.org/10.21883/JTF.2021.07.50957.347-20 (In Russ.)
Mintairov S. A., Nakhimovich M. V., Salii R. A., Shvarts M. Z., Kalyuzhnyi N. A. Uvelichenie koeffitsienta poleznogo deistviya fotopreobrazovatelei lazernogo izlucheniya diapazona 520–540 nm na osnove geterostruktur GaInP/GaAs [Increasing the efficiency of photoconverters for laser radiation in the 520– 540 nm range based on GaInP / GaAs heterostructures]. Pis’ma v zhurnal tekhnicheskoi fiziki (Technical Physics Letters). 2021;(6): 29–31. https://doi.org/10.21883/PJTF.2021.06.50755.18619 (In Russ.)
Zhukov A. E., Kovsh A. R. Quantum dot diode lasers for optical communication systems. Quantum Electronics. 2008;38(5): 409–423. https://doi.org/10.1070/qe2008v038n05abeh013817
Marmalyuk A. A., Ivanov A. V., Kurnosov V. D., Ladugin M. A., Lobintsov A. V., Padalitsa A. A., Romatsevich V. I., Ryaboshtan Yu. L., Sapozhnikov S. M., Svetogorov V. N., Simakov V. A. AlGaInAs/InP semiconductor lasers with an increased electron barrier. Quantum Electronics. 2019;49 (6): 519–521.https://doi.org/10.1070/qel17032
Borda C., DuToit D., Duncan H., Nikles M. External pipeline leak detection based on fiber optic sensing for the kinosis 12″–16″ and 16″–20″ pipe-inpipe system. External pipeline leak detection based on fiber optic sensing for the kinosis 12″–16″ and 16″–20″ pipe-in-pipe system. In: Volume 1: Design and Construction; Environment; Pipeline Automation and Measurement. 10th International Pipeline Conference. 2014;IPC2014–33375: V001T09A016. https://doi.org/10.1115/ipc2014-33375
Song J. H., Cho S. H., Han I. K., Hu Y., Heim P. J. S., Johnson F. G., Stone, D. R., Dagenais M. High-power broad-band superluminescent diode with low spectral modulation at 1.5-μm wavelength. IEEE Photonics Technology etters. 2000;12(7): 783-785. https://doi.org/10.1109/68.853499
Han I. C., Jaffe G. J. Evaluation of artifacts associated with macular spectral-domain optical coherence tomography. Ophthalmology. 2010;117(6): 1177–1174. https://doi.org/10.1016/j.ophtha.2009.10.029
Jiao Y. G., Nishiyama N., van der Tol J., van Engelen J., Pogoretskiy V., Reniers S., Abbas Kashi A., Wang Y., Calzadilla V. D., Spiegelberg M. Show InP membrane in tegrated photonicsresearch. Semiconductor Science and Technology. 2021;36(1): 013001. https://doi.org/10.1088/1361-6641/abcadd
Hou C. -C., Chen H. -M., Zhang J. -C., Zhuo N., Huang Y.-Q., Hogg R. A., Childs D. TD, Ning J. -Q., Wang Z.-G., Liu F. -Q., Zhang Z. -Y. Near-infrared and mid-infrared semiconductor broadband light emitters. Light: Science & Applications. 2018;(7): 17170. https://doi.org/10.1038/lsa.2017.170
Svetikov V. V., Kononov M. A. Generation of a broad-area laser diode in an asymmetrical V-cavity possessing a spectrally nonselective feedback mirror. Quantum Electronics. 2018;48(8): 706–710. https://doi.org/10.1070/qel16706
Mittova I. Ya., Sladkopevtcev B. V., Samsonov A. A., Tomina E. V., Andreenko S. Yu., Kostenko P. V. Growth and properties of nanofilms produced by the thermal oxidation of MnO2/InP under the effect of Mn3(PO4)2. Inorganic Materials. 2019;55(9): 915–919. https://doi.org/10.1134/s0020168519090073
Vasil’ev M. G., Izotov A. D., Marenkin S. F., Shelyakin A. A. Preparation of shaped indium phosphide surfaces for edge-emitting devices. Inorganic Materials. 2019;55(1): 105–108. https://doi.org/10.1134/s0020168519010175
Suchikova Y. Porous indium phosphide: preparation and properties. In: Aliofkhazraei M., Makhlouf A. (eds). Handbook of Nanoelectrochemistry. Springer, Cham.: 2015. p. 283–305. https://doi.org/10.1007/978-3-319-15266-0_28
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.