High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system

Keywords: High-temperature spectrophotometry, In – Se system, Phase diagram, Heterogeneous equilibria, Indium chlorides


The goals of this work are as follows: (а) searching for a method of study of the In – Se system taking into account the specified problems and difficulties, (b) choosing a way for the instrumental implementation of this method, and (c) obtaining experimental evidence that this method and its implementation are promising. 
The choice of the In – Se system is related to the fact that indium selenides, layered structures and semiconductor phases with stoichiometric vacancies, are promising from the point of view of materials science. This choice is also related to the use of binary precursors for the synthesis of heterostructures based on CIS compounds.
We studied the possibility of applying the auxiliary component method using the equilibrium with the participation of indium chloride vapours which were made to contact the condensed phases of the In – Se system. Equilibrium was achieved using high-temperature spectrophotometry of the vapour phase. The experiment had two stages. During the first stage we determined the absorption characteristics of the InCl3 vapour. During the second stage we studied the heterogeneous equilibrium of the unsaturated indium chloride vapour with several phases of the In – Se system. Over the course of the study, we determined the molar attenuation coefficients of the InCl3 vapour and plotted the temperature dependences of the value KP.
It was found that the phase composition of the alloys significantly influences the position of the corresponding lines on the KP–T diagram, which proves the possibility of using the suggested auxiliary component method in its specific instrumental (spectrophotometric) implementation in order to study the In – Se system. We also showed the additional possibilities of using this method for plotting T-x diagrams of binary systems in such high-temperature areas where the binary solid phase is in equilibrium with the melt. This application of the method is related to the solubility of a vapour of an auxiliary component (chlorine in the form of indium chlorides) in the melts of binary phases (indium selenides).


Download data is not yet available.

Author Biographies

Nikolay Yu. Brezhnev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Junior Researcher in
Chemistry, PhD student, Department of General and
Inorganic Chemistry, Voronezh State University;
Voronezh, Russian Federation; e-mail: brezhnevnick@gmail.com

Andrey V. Kosyakov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Chemistry, Assistant
Professor, Department of General and Inorganic
Chemistry, Voronezh State University, Voronezh,Russian Federation; e-mail: lavchukb@mail.ru.

Anastasia V. Steich, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Student, Department of
General and Inorganic Chemistry, Voronezh State
University, Voronezh, Russian Federation; e-mail:

Alexander Yu. Zavrazhnov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry,
Professor at the Department of General and Inorganic
Chemistry, Voronezh State University, Voronezh,
Russian Federation; e-mail: alzavr08@rambler.ru


Okamoto H. In-Se (Indium-Selenium). Journal of Phase Equilibria and Diffusion. 2004;25(2): 201. https://doi.org/10.1007/s11669-004-0031-y

Tedenac J.-C., Vassilev G. P., Daouchi B., Rachidi J., Brun G. Low-temperature region of the In-Se system. Crystal Research and Technology. 1997;3 2(4): 605–616. https://doi.org/10.1002/crat.2170320417

Li J. B., Record M. C., Tedenac J. C. A thermodynamic assessment of the In-Se system. Zeitschrift für etallkunde. 2003;94(4): 381–389. https://doi.org/10.3139/146.030381

Gödecke T., Haalboom T., Sommer F. Stable and metastable phase equilibria of the In-Se system. Journal of Phase Equilibria. 1998;19(6): 572–578. https://doi.org/10.1007/bf02701021

Barker M. G. Inorganic chemistry of the maingroup elements. Volume 3. С. C. Addison (ed.). Royal Society of Chemistry, UK; 2007. 550 p. https://doi.org/10.1039/9781847556400

Chi Y., Sun Z.-D., Xu Q.-T. Hexagonal In2Se3: A defect wurtzite-type infrared nonlinear optical material with moderate birefringence contributed by unique InSe5 Unit. ACS Applied Materials & Interfaces. 2020;12(15): 17699–17705. https://doi.org/10.1021/acsami.9b23085

Chen S., Hutabalian Y., Gierlotka W., Wang C., Lu S. Phase diagram of Bi–In–Se ternary system. Calphad. 2020;68: 101744. https://doi.org/10.1016/j.calphad.2020.101744

Zavrazhnov A. Yu. Design of P-T-x diagrams for gallium chalcogenides with the use of an ancillary component. Russian Journal of Inorganic Chemistry. 2003;48(10): 1577–1590. Available at: https://elibrary.ru/item.asp?id=13439652

Zavrazhnov A. Yu. Upravlyaemyi sintez nestekhiometricheskikh soedinenii i issledovanie fazovykh ravnovesii pri pomoshchi vspomogatel’nogo komponenta [Guided synthesis of nonstoichiometric compounds and phase equilibrium studies using an auxiliary component]. Diss. … DSc in Chemistry. Voronezh; 2004. 340 p. Available at: https://www.dissercat.com/content/upravlyaemyi-sinteznestekhiometricheskikh-soedinenii-i-issledovaniefazovykh-ravnovesii-s-p

Zavrazhnov A. Y., Naumov A. V., Sergeeva A. V., Sidei V. I. Selective chemical vapor transport as a means of varying the composition of nonstoichiometricindium sulfides. Inorganic Materials. 2007;43: 1167–1178. https://doi.org/10.1134/S0020168507110039

Lamoureux M., Milne J. The disproportionation of diselenium dichloride, Se2Cl2, and diselenium dibromide, Se2Br2. Canadian Journal of Chemistry. 1989;67(11): 1936–1941. https://doi.org/10.1139/v89-301

Hahn H., Nickels W. Uber sulfid-, selenid- und telluridhalogenide des indiums. Zeitschrift for anorganische und allgemeine Chemie. 1960;304(1-2): 100–108. https://doi.org/10.1002/zaac.19603040112

Kosyakov A. V., Zavrazhnov A. Y., Naumov A. V. Refinement of the In-S phase diagram using spectrophotometric characterization of equilibria between hydrogen and indium sulfides. Inorganic Materials. 2010;46: 343–345. https://doi.org/10.1134/S0020168510040035

Ashok A., Regmi G., Velumani S. Growth of In2Se3 thin films prepared by the pneumatic spray pyrolysis method for thin film solar cells applications. In: 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). 2020; 1–6. https://doi.org/10.1109/cce50788.2020.9299133

Kunia Y., Hosada S., Hosuka M. Studies on the vapor phase reactions in the system In–Cl2. Denki Kagaku oyobi Kogyo Butsuri Kagaku. 1974;42(1): 20–25. https://doi.org/10.5796/kogyobutsurikagaku.42.20

Zavrazhnov A. Y., Naumov A. V., Malygina E. N., Kosyakov A. V. Indium monochloride vapor pressure: theva por-gauge and spectrophot ome tricexperimaental data. Kondensirovannye Sredy i Mezhfaznye Granitsy = Condensed Matter and Interphases. 2019;21(1): 60–71. https://doi.org/10.17308/kcmf.2019.21/717

Fedorov P. I. Indii [Indium]. Moscow: Nauka Publ.; 2000. 276 p. (In Russ.)

Zavrazhnov A. Yu., Kosyakov A. V., Sergeeva A. V., Berezin S. S., Chernenko K. K. Hightemperature in situ vapor spectrophotometry as a static variant of tensimetric method equilibria in the Ga-I system. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2015;17(4): 417–436. https://elibrary.ru/item.asp?id=25946578

Brunetti B., Piacente V., Scardala P. A torsion study on the sublimation process of InCl3. Journal of Chemical & Engineering Data. 1998;43(1): 101–104. https://doi.org/10.1021/je970188a

Oppermann H., Krausze R., Bruhn U., Balarin M. Zurn sattigungsdruck von GaCl3, und InCl3. Zeitschrift for anorganische und allgemeine Chemie. 1994;620(6): 1110-1114. https://doi.org/10.1002/zaac.19946200627

Polyachenok O. G.; Komshilova O. N. Vaporpressure of indium chloride. Izv. Akad. Nauk BSSR. Ser. Fiz.-Energ. 1970;2: 90-94.

Zavrazhnov A., Naumov A., Kosyakov A., Berezin S., Volkov V., Sergeeva A. The iron sulfides crystal growth from the halide melts. Material Research. 2018;21(4): 20170648. https://doi.org/10.1590/1980-5373-mr-2017-0648

Zavrazhnov A. Y., Naumov A. V., Sidey V. I., Pervov V. S. Composition control of low-volatile solids through chemical vapor transport reactions. III. The example of gallium monoselenide: Control of the polytypic structure, non-stoichiometry and properties. Thermochimica Acta. 2012;527(1): 118–124. https://doi.org/10.1016/j.tca.2011.10.012

Daouchi B., Record M. C., Tedenac J. C., Vassilev G. Phase diagram investigation of the indiumselenium system. Zeitschrift fuer Metallkunde.. 1998;89(9): 612–617. Available at: https://elibrary.ru/item.asp?id=27948695

Turchen D. N., Zavrazhnov A. Yu., Goncharov E. G. Issledovanie nestekhiometrii faz s nizkoi letuchest‘yu. Oblast’ gomogennosti GaSe [Investigation of nonstoichiometry of phases with low volatility. GaSe homogeneity region]. Russian Journal of General Chemistry. 1998:68(6): 920–925. Available at: https://elibrary.ru/item.asp?id=29113194 (In Russ.)

How to Cite
Brezhnev, N. Y., Kosyakov, A. V., Steich, A. V., & Zavrazhnov, A. Y. (2021). High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(4), 482-495. https://doi.org/10.17308/kcmf.2021.23/3667
Original articles