Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes

Keywords: electrodialysis, bipolar membrane, modification, bentonite, organobentonite, sodium sulphate, acid, alkali

Abstract

The aim of this work is to study the characteristics of the electrodialysis of a sodium sulphate solution with experimental bipolar membranes based on the MA-41 anion exchange membrane and a liquid sulphonated cation-exchanger modified with bentonite clays. The conversion of sodium sulphate was conducted by electrodialysis with bipolar membranes obtained by applying a liquid sulphonated cation-exchanger containing particles of bentonite clay to the MA-41 anion-exchange membrane.
To increase the performance of membranes in terms of hydrogen and hydroxyl ions, we carried out organomodifications of bentonite with alkyldimethylbenzylammonium chloride and stearic acid at various concentrations. The bipolar membrane with the addition of bentonite modified with alkyldimethylbenzylammonium chloride (2 wt%) showed a higher performance in terms of H+-ions. The bipolar membrane with bentonite modified with stearic acid (3 wt%) added to its cation-exchange
layer is the most effective in terms of obtaining a flux of OH--ions. It was shown that a combination of
alkyldimethylbenzylammonium chloride (2 wt%) and stearic acid (3 wt%) used to modify bentonite can increase the performance of the bipolar membrane during the conversion of sodium sulphate, both in terms of the acid and alkali.

Downloads

Download data is not yet available.

Author Biographies

Olga A. Kozaderova, Voronezh State University of Engineering Technologies, 19 Revolutsii pr., Voronezh 394036, Russian Federation

DSc in Chemistry, Professor
at the Department of Inorganic Chemistry and
Chemical Technology, Voronezh State University of
Engineering Technologies, Voronezh, Russian
Federation; e-mail: kozaderova-olga@mail.ru

Ksenia B. Kim, Voronezh State University of Engineering Technologies, 19 Revolutsii pr., Voronezh 394036, Russian Federation

PhD in Chemistry, Associate
Professor at the Department of Inorganic Chemistry
and Chemical Technology, Voronezh State University
of Engineering Technologies, Voronezh, Russian
Federation; e-mail: kmkseniya@yandex.ru

Petr E. Belousov, Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences 35 Staromonetny pereulok, Moscow 119017, Russian Federation

PhD in Geology and Mineralogy,
senior researcher, Institute of Geology of Ore Deposits,
Petrography, Mineralogy, and Geochemistry of the
Russian Academy of Sciences, Moscow, Russian
Federation; e-mail: pitbl@mail.ru

Anna V. Timkova, Voronezh State University of Engineering Technologies, 19 Revolutsii pr., Voronezh 394036, Russian Federation

postgraduate student,
Department of Inorganic Chemistry and Chemical
Technology, Voronezh State University of Engineering
Technologies, Voronezh, Russian Federation, e-mail:
timkova.anna@mail.ru

Sabukhi I. Niftaliev, Voronezh State University of Engineering Technologies, 19 Revolutsii pr., Voronezh 394036, Russian Federation

DSc in Chemistry, Professor,
Head of Department of Inorganic Chemistry and
Chemical Technology, Voronezh State University of
Engineering Technologies, Voronezh, Russian
Federation; e-mail: sabukhi@gmail.com

References

Strathmann H. Ion-exchange membrane separation processes. Elsevier; 2004. v. 43, 60 p. https://doi.org/10.1016/s0927-5193(04)80031-7

Fathizadeh M., Aroujalian A., Raisi A. Effect of added NaXnano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. Journal of Membrane Science. 2011;375(1-2): 88–95. https://doi.org/10.1016/j.memsci.2011.03.017

Hosseini S. M., Madaeni S. S., Zendehnam A., Moghadassi A. R., Khodabakhshi A. R., Sanaeepur H. Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification. Journal of Industrial and Engineering Chemistry. 2013;19(3): 854–862. https://doi.org/10.1016/j.jiec.2012.10.031

Zendehnam A., Arabzadegan M., Hosseini S. M., Robatmili N., Madaeni S. S. Fabrication and modification of polyvinylchloride based heterogeneous cation exchange membranes by simultaneous using Fe-Ni oxide nanoparticles and Ag nanolayer: physicochemical and antibacterial characteristics. Korean Journal of Chemical Engineering. 2013;30(6): 1265–1271. https://doi.org/10.1007/s11814-013-0063-2

Zarrinkhameh M., Zendehnam A., Hosseini S. M. Preparation and characterization of nanocomposite heterogeneous cation exchange membranes modified by silver nanoparticles. Korean Journal of Chemical Engineering. 2014;31(7): 1187–1193. https://doi.org/10.1007/s11814-014-0051-1

Huang M., Shen Y., Cheng W., Shao Y., Sun X., Liu B., Dong S. Nanocomposite films containing Au nanoparticles formedby electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygenreduction. Analytica Chimica Acta. 2005;535(1-2): 15–22. https://doi.org/10.1016/j.aca.2004.12.006

Camargo P. H. C., Satyanarayana K. G., Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research. 2009;12(1): 1–39.

https://doi.org/10.1590/s1516-14392009000100002

Yaroslavtsev A. B., Nikonenko V. V., Zabolotskiy V. I. Ion transfer in ion-exchange and membrane materials. Russian Chemical Reviews. 2003;72(5): 438–470. https://doi.org/10.1070/rc2003v072n05abeh000797

Domènech B., Bastos-Arrieta J., Alonso A., Macanás J., Muñoz M., Muraviev D. N. Bifunctional polymer-metal nanocomposite ion exchange materials. In book: Ion exchange technologies. 2012: 35–72. https://doi.org/10.5772/5157910. Yaroslavtse A. B. Correlation between the properties of hybrid ion-exchange membranes and the nature and dimensions of dopant particles. Nanotechnologies in Russia. 2012;7(9-10): 437–451. https://doi.org/10.1134/s1995078012050175

Kravchenko T. A., Sakardina E. A., Kalinichev A. I., Zolotukhina E. V. Stabilization of copper nanoparticles with volume- and surface-distribution inside ion-exchange matrices. Russian Journal of Physical Chemistry A. 2015;89(9): 1648-1654. https://doi.org/10.7868/S0044453715080178

Kang M.-S., Choi Y.-J., Lee H.-J., Moon S.-H. Electrochemical characteristics of ion-exchange membranes coated with iron hydroxide/oxide and silica sol. Journal of Colloid and Interface Science. 2003;273(2): 523–532. https://doi.org/10.1016/j.jcis.2004.01.050

Sheldeshov N. V, Zabolotskiy V. I, Ganych V. V. Vliyanie nerastvorimykh gidroksidov metallov na skorost’ reaktsii dissotsiatsii vody na kationoobmennoi membrane [Influence of insoluble metal hydroxides on the rate of water dissociation reaction on a catione xchange membranе]. Russian Journal of еlectrochemistry. 1994;30(12): 1458–1461. (In Russ.)

Melnikov S. S., Shapovalova O. V., Sheldeshov N. V., Zabolotsky V. I. Vliyanie gidroksidov d-metallov na dissotsiatsiyu vody v bipolyarnykh membranakh [Influence of d-metal hydroxides on water dissociation in bipolar membranes]. Membrany i membrannye tekhnologii. 2011;1(2): 149–156. Available at: https://elibrary.ru/item.asp?id=16316683 (In Russ.)

Sheldeshov N. V. Zabolotskiy V. I., Alpatova N. V. Influence of heavy metal hydroxides on water dissociation in bipolar membrane. Polymatic online scientific journal of Kuban State Agrarian University. 2015;114: 275–287. Available at: https://elibrary.ru/item.asp?id=25280358 (In Russ., abstract in Eng.)

Sheldeshov N. V., Zabolotskiy V. I. Bipolyarnye ionoobmennye membrany. Poluchenie. Svoistva. Primenenie [Bipolar ion-exchange membranes. Receiving. Properties. Application]. In book: Membrany i membrannye tekhnologii [Membranes and membrane technologies]. Moscow: Nauchnyi Mir Publ.; 2013. 612 p. (In Russ.)

Melnikov S. S., Zabolotsky V. I. Sheldeshov N. V. Electochemical properties of asymmetric bipolar membranes. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2010;12(2): 143–148. Available at: https://elibrary.ru/item.asp?id=15176048 (In Russ., abstract in Eng.)

Jalani N. H., Dunn K., Datta R. Synthesis and characterization of Nafion(R)-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochimica Acta. 2005;51(3): 553–560. https://doi.org/10.1016/j.electacta.2005.05.016

Miyake N., Wainright J. S., Savinell R. F. Evaluation of a sol-gel derived nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol uptake and methanol permeability. Journal of The Electrochemical Society. 2001;148(8): 905. https://doi.org/10.1149/1.1383072

Balster J. H. Membrane module and process development for monopolar and bipolar membrane electrodialysis. Zutphen: Wöhrmann Print Service; 2006. 213 p.

Kozaderova O. A. Electrochemical characterization of an MB-2 bipolar membrane modified by nanosized chromium(III) hydroxide. Nanotechnologies in Russia. 2018;13(9-10): 508–515. https://doi.org/10.1134/S1995078018050075

Saccà A., Gatto I., Carbone A., Pedicini R., Passalacqua E. ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. Journal of Power Sources. 2006;163(1) : 47–51. https://doi.org/10.1016/j.jpowsour.2005.12.062

Niepceron F., Lafitte B., Galiano H., Bigarré J., Nicol E., Tassin J.-F. Composite fuel cell membranes based on an inert polymer matrix and protonconducting hybrid silica particles. Journal of Membrane Science. 2009;338(1-2): 100–110. https://doi.org/10.1016/j.memsci.2009.04.022

Novikova S., Safronova E., Lysova A., Yaroslavtsev A. Influence of incorporated nanoparticles on the ionic conductivity of MF-4SC membrane. Mendeleev Commun. 2010;20(3): 156–157. https://doi.org/10.1016/j.mencom.2010.05.011

Safronova E. Yu., Volkov V. I., Yaroslavtsev A. B. Ion mobility and conductivity of hybrid ionexchange membranes incorporating inorganic nanoparticles. Solid State Ionics. 2011;188(1): 129–131. https://doi.org/10.1016/j.ssi.2010.12.006

Yaroslavtsev A. B., Safronova E. Yu., Lysova A. A., Novikova S. A., Stenina I. A., Volkov V. I. Ion conductivity of hybrid ion exchange membranes incorporating nanoparticles. Desalination and Water Treatment. 2011;35(1–3): 202–208. https://doi.org/10.5004/dwt.2011.2489

Gerasimova E. V., Safronova E. Yu, Volodin A. A., Ukshe A. E., Dobrovolsky Yu A., Yaroslavtsev A. B. Electrocatalytic properties of the nanostructured electrodes and membranes in hydrogen-air fuel cells. Catalysis Today. 2012;193(1): 81–86. https://doi.org/10.1016/j.cattod.2012.06.018

Safronova E. Y., Prikhno I., Yurkov G., Yaroslavtsev A. Nanocomposite membrane materials based on nafion and cesium acid salt of phosphotungstic heteropolyacid. Chemical Engineering Transactions. 2015;43: 679–684. https://doi.org/10.3303/CET1543114

Gerasimova E, Safronova E., Ukshe A., Dobrovolsky Yu., Yaroslavtsev A. Electrocatalytic and transport properties of hybrid Nafion® membranes doped with silica and cesium acid salt of phosphotungstic acid in hydrogen fuel cells. Chemical Engineering Journal. 2016;305: 121–128. https://doi.org/10.1016/j.cej.2015.11.079

Yaroslavtsev A. B. Correlation between the properties of hybrid ion-exchange membranes and the nature and dimensions of dopant particles. Nanotechnologies Russ. 2012; 7 (9–10): 437–451. https://doi.org/10.1134/S1995078012050175

Perepelkina A. I., Safronova E. Yu., Shalimov A. S., Yaroslavtsev A. B. Hybrid materials based on MF-4SK membranes modified with silicon carbide and carbon nanotubes. Petroleum Chemistry. 2012;52(7):475–479. https://doi.org/10.1134/S0965544112070109

Lai C. Y. , Groth A, Gray S. , Duke M. Nanocomposites for improved physical durability of porous. Membranes. 2014;4 (57-58): 56–66. https://doi.org/10.3390/membranes4010055

Pramono E., Alfiansyah R., Ahdiat M., Wahyuningrum D., Radiman C. L. Hydrophilic poly(vinylidene fluoride)/bentonite hybrid membranes for microfiltration of dyes. Materials Research Express. 2019;6(10): 105376. https://doi.org/10.1088/2053-1591/ab42e9

Pagidi A., Lukka Thuyavan Y., Arthanareeswaran G., Ismail A. F., Jaafar J., Paul D. Polymeric membrane modification using SPEEK and bentonite for ultrafiltration of dairy wastewater. Journal of Applied Polymer Science. 2015;132(21): https://doi.org/10.1002/app.41651

Yaghoubi Z., & Basiri-Parsa J. Modification of ultrafiltration membrane by thermo-responsive Bentonite - poly(N-isopropylacrylamide) nanocomposite to improve its antifouling properties. Journal of Water Process Engineering. 2020;34: 101067. https://doi.org/10.1016/j.jwpe.2019.101067

Hebbar R. S., Isloor A. M., Prabhu B., Inamuddin, Asiri A. M., Ismail A. F.Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay. Scientific Reports. 2018;8(1)1665. https://doi.org/10.1038/s41598-018-22837-1

Pourzare K., Mansourpanah Y., Farhadi S. Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Research Journal. 2016;3(4): 496–513. https://doi.org/10.18331/BRJ2016.3.4.4

Zhang X. Porous organic-inorganic hybrid electrolytes for high-temperature proton exchange membrane fuel cells. Journal of the Electrochemical Society. 2007;154(3): 322–326. https://doi.org/10.1149/1.2429045

Lixon Buquet C., Fatyeyeva K., Poncin-Epaillard F., Schaetzel P., Dargent E., Langevin D., Nguyen Q. T., Marais S. New hybrid membranes for fuel cells: plasma treated laponite based sulfonated polysulfone. Journal of Membrane Science. 2010;351(1-2): 1–10. https://doi.org/ 10.1016/j.memsci.2010.01.020

Fu T., Cui Z., Zhong S., Shi Y., Zhao C., Zhang G., Shao K., Na H., Xing W. Sulfonated poly(ether ether ketone)/clay–SO3H hybrid proton exchange membranes for direct methanol fuel cells. Journal of Power Sources. 2008;185(1): 32–39. https://doi.org/10.1016/j.jpowsour.2008.07.004

Peighambardoust S. J., Rowshanzamir S., Amjadi M. Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy. 2010;35(17): 9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017

Lee S. K., Mogi G., Li Z., Hui K. S., Lee S. K., Hui K. N, Park S. Y., Ha Y. J., Kim J. W. Measuring the relative efficiency of hydrogen energy technologies for implementing the hydrogen economy: An integrated fuzzy AHP/DEA approach. International Journal of Hydrogen Energy. 2011;36(20): 12655–12663. https://doi.org/10.1016/j.ijhydene.2011.06.135

Kakati B. K., Mohan V. Development of low-cost advanced composite bipolar Plate for proton exchange membrane fuel cell. Fuel Cells. 2008;8(1): 45–51. https://doi.org/10.1002/fuce.200700008

Nasedkin V. V., Demidenok K. V., Boeva N. M., Belousov P. E., Vasiliev A. L. Organogliny. proizvodstvo i osnovnye napravleniya ispol’zovaniya. Aktual’nye innovatsionnye issledovaniya: nauka i praktika [Organoclays. production and main directions of use]. Actual innovative research: science and practice. 2012;3: 1–19. Available at: https://elibrary.ru/item.asp?id=18203393 (In Russ.)

Zakil F. A., Kamarudin S. K., Basri S. Modified Nafion membranes for direct alcohol fuel cells: An overview. Renewable and Sustainable Energy Reviews. 2016;65: 841–852. https://doi.org/10.1016/j.rser.2016.07.040

Jung D. H., Chao S. Y., peck D. H., Kim J. S. Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell. Journal of Power Sources. 2003;118(1–2): 205 – 211. https://doi.org/10.1016/S0378-753(03)00095-8

Zaidi S., Fadhillah F., Saleem H., Hawari A., Benamor A. Organically modified nanoclay filled thinfilm nanocomposite membranes for reverse osmosis application. Materials. 2019;12 (22): 3803. https://doi.org/10.3390/ma12223803

Mohamed Amin M. A., Goh P. S., Ismail A. F. Effect of organoclay on the performance of reverse osmosis membrane. Journal of Membrane Science and Research. 2020;6(1): 13–19.

https://doi.org/10.22079/JMSR.2019.112286.1279

Caprarescu S., Ianchis R., Radu A.-L., Sarbu A., Somoghi R., Trica B., Alexandrescu E., Spataru C.-I., Fierascu R.C., Ion-Ebrasu D., Preda S., Atanase L.-I., Donescu D. Synthesis, characterization and efficiency of new organically modified montmorillonite polyethersulfone membranes for removal of zinc ions from wastewasters. Applied Clay Science. 2017;137(1): 135–142. https://doi.org/10.1016/j.clay.2016.12.013

Hosseini S. M., Seidypoor A., Nemati M., Madaeni S. S., Parvizianand F., Salehi E. Mixed matrix heterogeneous cation exchange membrane filled with clay nanoparticles: membranes’ fabrication and characterization in desalination process. Journal of Water Reuse and Desalination. 2016;6(2): 290–300. https://doi.org/10.2166/wrd.2015.064

Radmanesh F., Rijnaarts T., Moheb A., Sadeghi M., de Vos W. M. Enhanced selectivity and performance of heterogeneous cation exchange membranes through addition of sulfonated and protonated. Montmorillonite. Journal of Colloid and Interface Science. 2019;553(1): 658–670. https://doi.org/10.1016/j.jcis.2018.08.100

Peng F., Peng S., Huang C., Xu T. Modifyin gipolar membranes with palygorskite and FeCl3. Journal of Membrane Science. 2008; 322(21): 122–127 https://doi.org/10.1016/j.memsci.2008.05.027

Belousov P. E., Krupskaya V. V. Bentonite clays of Russia and neighboring countries. Georesursy. 2013;21(3): 79–90. https://doi.org/10.18599/grs.2019.3.79-90

Boeva N. M., Bocharnikova Yu. I., Nasedkin V. V., Belousov P. E., Demidenok K. V. Thermal analysis as an express method for assessing the quality and quantity of natural and synthesized organoclays. Nanotechnologies in Russia. 2013;8 (3-4): 205–208. https://doi.org/10.1134/s199507801302002x

Product catalog of JSC Shchekinoazot. Available at: http://www.azotom.ru/monopolyarnye-membrany/56. Department of Polytetrafluoroethylene and Perfluorinated Ion Exchange Membranes. Available at: http://www.plastpolymer.com/structure/otdelpolitetraftorjetilena-i-perftorirovannyh-ionoobmennyh-membran/

Zabolotskii V., Sheldeshov N., Melnikov S. Effect of cation-exchange layer thickness on electrochemical and transport characteristics of bipolar membranes. Journal of Applied Electrochemistry. 2013;43(11): 1117–1129. https://doi.org/10.1007/s10800-013-0560-3

Membrane properties. Available at: http://www.ralex.eu/Membrany/Uvod.aspx

Hanada F., Hirayama K., Ohmura N., Tanaka S. Bipolar membrane and method for its production. US Patent. 1993. 5, 221,455.

Fu R. Q., Xu T. W., Cheng Y. Y., Yang W. H., Pan Z. X. Fundamental studies on the intermediate layer of a bipolar membrane. III. Effect of starburst dendrimer (PAMAM) on water dissociation at the interface of a bipolar membrane. Journal of Membrane Science. 2004;240(1): 141–147. https://doi.org/10.1016/j.memsci.2004.05.002

Kang M. S., Choi Y. J., Lee H. J., Moon S. H. Effects of inorganic substances onwatersplitting in ion-xchangemembranes. I. Electrochemical characteristics of ion exchange membranescoated with iron hydroxide/oxide and silica sol. Journal of Colloid and Interface Science. 2004;273(2): 523–532. https://doi.org/10.1016/j.jcis.2004.01.050

Published
2021-11-24
How to Cite
Kozaderova, O. A., Kim, K. B., Belousov, P. E., Timkova, A. V., & Niftaliev, S. I. (2021). Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(4), 518-528. https://doi.org/10.17308/kcmf.2021.23/3670
Section
Original articles