• E. V. Tomina Dr. Sci. (Chem.), Associate Professor of Materials Science and Industry of Nanosystems Department, Voronezh State University; tel.: +7 (473) 2208356, e-mail: tomina-e-v@yandex.ru
  • O. V. Ivanova competitor for science degree of Master Science in Chemistry of Materials Science and Industry of Nanosystems Department, Voronezh State University; tel.: +7 (951) 5644249, e-mail: lesya_ivanova_95@mail.ru
Keywords: nanopowders, bismuth orthoferrite, sol-gel synthesis, ferromagnets, multiferroics


Nanocrystals, thin films, heterostructures based on nanoscale bismuth ferrite, a ferroelectric with high Curie temperatures (1123 K) and the antiferromagnetic Neel point (643 K) are promising as high-efficiency magneto-electric materials. Solid phase synthesis of materials based on ferrites due to their refractoriness requires a long time and high temperatures up to 1500 °C, which leads to a significant increase in the energy intensity of the synthesis processes. It is a pressing challenge to synthesize multifunctional nanomaterials based on bismuth ferrite using simple and low-cost methods. The main purpose of this work is to develop and optimize the synthesis of BiFeO3 nanopowder using microwave and ultrasonic radiation. The choice of the crystalline hydrates Fe(NO3)3∙9Н2О and Bi(NO3)3·5H2O as precursors is conditioned by the intensive absorption of microwave radiation by water molecules due to their significant dipole moment and the ability to reorient and rotate under microwave action. Microwave radiation stimulates decomposition of salt precursors, dehydration and synthesis of bismuth ferrite due to homogeneity and high speed of microwave heating and acceleration of the processes of the "nucleation" under the influence of "nonthermal" effects. Using the XRD and IRS methods, optimal parameters of BiFeO3 synthesis have been established, which makes it possible to obtain chemically homogeneous samples without Bi2O3: precipitant – NaOH, microwave exposure time (power 700 W) is 15 minutes, ultrasonic treatment is 10 minutes, thermal annealing at 500 °C is 2 hours. The size of the coherent scattering regions of bismuth ferrite samples synthesized at these parameters is in the range of 54-80 nm, the average value is 67 nm. The TEM method has shown that the BiFeO3 nanoparticles synthesized under these conditions have a shape close to spherical and they have a fairly narrow dispersion in size (35-60 nm). The developed technique of bismuth ferrite synthesis activated by microwave and ultrasonic radiation significantly reduces the time and energy intensity of the process in comparison with solid-phase synthesis and ensures high chemical homogeneity of the product.




The reported study was supported by a grant from the Russian Foundation for Basic Research (project No. 16-43-360595 r_a).

The research was carried out using the equipment of the Centre for Collective Use of Scientific Equipment of Voronezh State University.


Download data is not yet available.


Berry F. J., Ren X., Gancedo J. R., Marco J. F. Hyperfine Interact, 2004, vol. 156, no. 1, pp. 335-340.
2. Zhang Q., Saito F. Journal of Materials Science, 2001, vol. 36, pp. 2287-2290. DOI: 10.1023/A:1017520806922
3. Bayraktar D., Clemens F., Diethelm S., et al. J. of the European Ceramic Society, 2007, vol. 27, no. 6, p. 2455-2461. https://doi.org/10.1016/j.jeurceramsoc.2006.10.004
4. Bazuev G. V., Zaitseva N. A., Krasil'nikov V. N., Kellerman D. G. Russian Journal of Inorganic Chemistry, 2003, vol. 48, no. 2, pp. 170-174.
5. He Q., Arenholz E., Scholl A., Chu Y. H., Ramesh R. Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, no. 5, pp. 216-226. https://doi.org/10.1016/j.cossms.2012.03.006
6. Egorysheva A. V., Volodin V. D., Ellert O. G., Efimov N. N., Skorikov V. M., Baranchikov A. E., Novotortsev V. M. Inorganic Materials, 2013, vol. 49, no. 3, pp. 303-309. DOI: 10.1134/S0020168513030023
7. Shishun Qi, Ruzhong Zuo, Yu Wang, Helen Wong Lai-Wa Chan. J. Mater. Sci., 2013, vol. 48, pp. 4143-4150. DOI: 10.1007/s10853-013-7227-7
8. Xian T., Yang H., Di L. J., Dai J. F. Research on Chemical Intermediates, 2015, vol. 41, no. 1, pp. 433–441. DOI 10.1007/s11164-013-1204-2
9. Lee T. K., Sung K. D., Jung J. H. Journal of Alloys and Compounds, 2015, vol. 622, pp. 734-737.
10. Titov S. V., Shilkina L. A., Verbenko I. A., Aljoshin V. A., Shevtsova S. I., Reznichenko L. A. «Zakonomernosti evolyutsii sostava, mezo- i mikrostruktyry keramicheskogo BiFeO3 pri modifitsirovanii redkozemel'nymi elementami» [“Regularities in the Evolution of the Composition, Meso- and Microstructures of Ceramic BiFeO3 at the Modified with Rare-Earth Elements”]. Materialy Mezhdunarodnoj nauchno-tehnicheskoj konferencii. [Proc. of the International Scientific and Technical Conference]. November 21-25, 2016, Moscow, 2016, pp. 18-21. (in Russ.)
11. Dolinskaya Yu. A., Kolesnikov I. E., Kurochkin A. V., Man'shina A. A., Mikhailov M. D., Semencha A. V. Fizika i Khimiya Stekla [Glass Physics and Chemistry], 2013, vol. 39, no. 3, pp. 308-310. DOI: 10.1134/S1087659613030061
12. Zhou Y. H., Lin J. Optical Materials, 2005, vol. 27, no. 2, pp. 1426-1432. DOI: 10.1016/j.optmat.2004.10.006
13. Zhang H., Fu X., Niu S., Sun G., Xin Q. Solid State Communications, 2004, vol. 132, no. 8, pp. 527-531. DOI: 10.1016/j.ssc.2004.09.008
14. Tomina E. V., Mittova I. Ja., Burceva N. A., Sladkopevtcev B. V. Patent RF, no. 2548089, 2015. (in Russ.)
15. Tomina E. V., Bojkov N. I., Zelenina L. S., Mittova V. O., Alferova S. I. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2016, no. 1, pp. 30-34. Available at: http://www.vestnik.vsu.ru/pdf/chembio/2016/01/2016-01-06.pdf (in Russ.)
16. Brandon D., Kaplan U. Mikrostruktura materialov. Metody issledovanija i kontrolja [Microstructure of Materials. Methods of Research and Control]. Moscow: Tehnosfera Publ., 2004, 384 p. (in Russ.)
17. Ting L., Yebin X., Jingyuan Z. Journal of American Ceramic Society, 2010, vol. 93, no. 11, pp. 3637-3641. DOI: 10.1111/j.1551-2916.2010.03945.x
How to Cite
Tomina, E. V., & Ivanova, O. V. (2018). MICROWAVE SYNTHESIS OF BISMUTH ORTHOPHERRITE. Condensed Matter and Interphases, 20(1), 148-155. https://doi.org/10.17308/kcmf.2018.20/486