ELLIPSOMETRIC CHARACTERISTICS OF THE OPTICAL CONSTANTS OF ROUGH SILVER SURFACES
Abstract
The highly localized electromagnetic fields in metal nanostructures of various shapes and sizes allows creating unique hybrid photovoltaic converters, optoelectronic devices, optical sensors, and other converters based on plasmon resonance. This paper shows that the technology developed based on electrochemical methods makes it possible to produce rough silver surfaces with deposited polymer films in which surface plasmons with a special spectral distribution can be generated. It describes the processes of transforming electromagnetic radiation incident on rough silver surfaces obtained by the electrochemical method with anodic dissolution (AD) and without AD. This work presents the reflection coefficients s- and p-polarized light which were measured on surface with AD and without AD. The reflection coefficients of polarized light were compared with coefficients of nonpolarised light on different rough silver surfaces. It is also shown that with an increase in surface roughness by 0.15 µm the reflection coefficients decrease by 4 times.
It was established that the conversion of the energy of the p-polarized light into the energy of surface plasmons on the anodically dissolved surface is more effective than on the surface without anodic dissolution. The efficiency of the conversion of incident radiation into the energy of surface plasmons with the due account of the roughness value was calculated. The dispersion curves of the real and imaginary part of dielectric permittivity function were analysed. It was shown that dispersion curves have a complex appearance, which is associated with the roughness of the anodically dissolved surface of silver. The results obtained can be used to develop opto- and biosensors and in photovoltaics for creation of solar energy converters.
Downloads
References
2. Gaponenko S. V. Introduction to Nanophotonics. Cambridge: Cambridge University Press, 2010, 716 p.
3. Sarid D., Challener W. Modern Introduction to Surface Plasmons: Theory, Mathematical Modeling and Applications. New York: Cambridge University Press, 2010, 371 p.
4. Maier A. Plasmonic Fundamentals and Application. UK: Springer, 2007, 221 p.
5. Govorov A. O., Lee J., Kotov N. A. Phys. Rev., 2007. vol. 76, p. 125308. DOI: 10.1103/PhysRevB.76.125308
6. Buja O. M., Mircescu N. E., Leopold N. J. Appl. Spectroscopy, 2014, vol. 81, no. 3, pp. 411-415. DOI: 10.1007/s10812-014-9946-1
7. Emel'yanov V. I., Koroteev I. I. Physics-Uspekhi [Advances in Physical Sciences)], 1981, vol. 135, no. 2, pp. 345-361. DOI: 10.1070/PU1981v024n10ABEH004812
8. Strelchuk V. V, Kolomys O. F., Golichenko B. O., Boyko M. I., Kaganovich E. B., Krishchenko I. M., Kravchenko S. O., Lytvyn O. S., Manoilov E. G., Nasieka Iu. M. Semiconductor Physics Quantum Electronics & Optoelectronics, 2015, vol. 18, no. 1, pp. 46-52. DOI: 10.15407/ spqeo18.01.046
9. Chmereva T. M., Kucherenko M. G. Izvestiya vysshikh uchebnykh zavedenii. Fizika [Russian Physics Journal], 2014, vol. 57, no. 10, pp. 116-121.
10. Venkatapathi M., Tiwari A. K. J. Appl. Phys., 2012, vol. 112, pp. 32-47. DOI: org/10.1063/1.4736544
11. Drachev V. P., Chettiar U. K., Kildishev A.V., Hsiao-Kuan Y., Shalaev V. M. Opt. Express, 2008, vol. 16, no. 2, pp. 1186-1195. DOI: 10.1364/OE.16.001186
12. Koganovich E. B., Kravchenko S. A., Maksimenko L. S., Manoilov E. G., Matyash I. E., Mishchuk O. N, Rudenko S. P., Serdega B. K. Optika i spektroskopiya [Optics and Spectroscopy], 2011, vol. 110, no. 4, pp. 513–521. DOI: https://doi.org/10.1134/S0030400X11040126
13. Rudenko S. P., Stetsenko M. A., Krishchenko I. M., Maksimenko L. S., Kaganovich E. B., Serdega B. K. Optika i spektroskopiya [Optics and Spectroscopy], 2016, vol. 120, no. 4, pp. 569-575. DOI: 10.7868/S0030403416040206
14. Kanwarjeet K. Optical Biosensing Using Localized Surface Plasmon Resonance of Gold Nanoparticles. Waterloo, Ontario, Canada, 2011, 219 p.
15. Sotnikov D. V., Zherdev A. V.,Dzantiev B. B. Uspekhi Biologicheskoi Khimii [Biological Chemistry Reviews], 2015, vol. 55, pp. 391-420. Available at: http://www.fbras.ru/wp-content/uploads/2017/10/Sotnikov.pdf (in Russ.)
16. Zhao Z., Carpenter M. A. J. Phys. Chem. C., 2013, vol. 117, no. 21, pp. 11124-11132. DOI: 10.1021/jp400837r
17. Slezhkin V. A., Gorlov R. V. Izvestiya KGTU, 2011, no. 20, pp. 115-122. (in Russ.)
18. Weber M. J. Handbook of Optical Materials, CRC: New York, 2003, 499 p.
19. Ford G. W., Weber W. H. Phys. Reports, 1984, vol. 113, no. 4, pp. 195-287. DOI: http://dx.doi.org/10.1016/0370-1573(84)90098-X
20. Brodskii A. M., Urbakh M. I. Physics-Uspekhi [Advances in Physical Sciences)], 1982, vol. 138, iss. 3, pp. 413-453. DOI: 10.3367/UFNr.0138.198211b.0413
21. Agranovich V. M., Mils D. L. Poverkhnostnye polyaritony. Elektromagnitnye volny na poverkhnostyakh i granitsy razdela sred [Surface Polaritons. Electromagnetic Waves on Surfaces and Media Interfaces]. Moscow, Nauka Publ., 1985, 525 p. (in Russ.)
22. Johnson P. B., Christy R. W. Phys. Rev., 1972, vol. 6, no. 12, pp. 4370-43-79. DOI: https://doi.org/10.1103/PhysRevB.6.4370
23. Novokhotnyi L., Khekht B. Osnovy nanooptiki [Fundamentals of Nanooptics]. Moscow, Fizmatlit Publ., 2009, 484 p. (in Russ.)
24. Kennedy B. J., Spaeth S., Dickey M., Carron K. T. J. Physical Chemistry B, 1999, vol. 103,. pp. 3640-3646. DOI: 10.1021/jp984454i
25. Surface Enhanced Raman Scattering. Edited by Richard K. Chang Yale University New Haven, Connecticut and Thomas E. Furtak Rensselaer Polytechnic Institute Troy, New York Plenum Press New York and London, 1982, pp. 203-221.
26. Svitasheva S. Modelling Methods of Optical Inhomogeneous Structures. Application of ellipsometry. Saarbruecken: Lambert Academic Publishing, 2013, 112 p.