NONLINEAR EFFECTS OF OXIDES OF p- AND d-ELEMENTS’ COACTIONS IN FORMATION OF THIN FILMS ON THE GaAs AND InP SURFACES OVERVIEW
Abstract
The thermal oxidation process of gallium arsenide and indium phosphide under the influence of binary oxides compositions has been studied (chemostimulator+chemostimulator and chemostimulator+inert component). Oxides-chemostimulators were oxides of p- and d-elements’ (Sb2O3, Bi2O3, PbO, CrO3, V2O5, MnO2, MnO), inerts components were – Ga2O3, Al2O3и Y2O3. The nonlinear effects of the oxide film thickness on the GaAs and InP surfaces from the compositions oxides-chemostimulators have been studied and interpreted. Nonlinear effects are characterized by different signs of deviation from the additive straight – negative, positive and alternating. There is a clear correlation between the existence of acid-base and oxidation-reduction interactions in the compositions chemostimulators and nonlinear effect’s sign. If there is acid-base and oxidation-reduction interactions between the compositions of the oxides, then a positive nonlinear effect will be observed, increasing with growing time and temperature of oxidation. With the weakening of acid-base and oxidation-reduction interactions, a positive deviation from additive function is replaced by alternating signs. In case of the complete absence of interaction between the oxides in the composition, there is a negative deviation from additive function, increasing with growing time and temperature of oxidation.The possibility of obtaining the additive function for the entire range of compositions action of the oxide film thickness on the GaAs surfaces from the compositions oxide-chemostimulator+inert component has been proven (inert component – Y2O3). The study of GaAs thermal oxidation under the influence of Sb2O3+ Ga2O3 compositions showed a significant negative departure of the oxide film thickness from the additive line for low Ga2O3 concentrations. When the Ga2O3 concentration in the compositions was higher than 40 mol %, the oxide film thickness grown on GaAs was an additive function of the activator composition. The nonlinear effects observed were caused by the influence of small Ga2O3 additions on the vaporization dynamics of antimony oxide through the enhancement of Sb2O3 sintering during the experiment. The spation localization of binding interactions between oxides-chemostimulators was revealed, which leads to the nonlinear effects. The solid-phase interactions enhance the chemostimulating activities of both oxides (a positive nonlinear effect takes place). The gas-phase interactions cause a marked negative deviation from the additive chemical stimulation effect The solid-phase interactions between the chemostimulators (during the evaporation of their mixtures) somewhat extend the lifetime of molecular oxide species in the vapor, giving rise to a positive thermal oxidation effect. The gas-phase interactions between the (chemostimulators are mainly dissociative. They reduce the chemostimulating effect and make a negative contribution to the nonlinear effects. The thin films of the GaAs and InP surfaces synthesized using this method have better electrophysical properties and exhibit a gas-sensitive response in a reducing gases atmosphere.
ACKNOWLEDGMENTS
The research results were obtained using the equipment of the Center for Collective Use of Equipment Voronezh State University. URL: http://ckp.vsu.ru
The reported study was supported by a grant from the Russian Foundation for Basic Research (project No. №18-03-00354_а).
Downloads
References
2. Mittova I. Ya., Sviridova V. V., Semenov V. N., Terekhov V. A. Izvestija AN SSSR. Serija Neorganicheskie materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1989, vol. 25, no. 6, pp. 908–911. (in Russ.)
3. Mittova I. Ya., Sviridova V. V., Fetisova S. V. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1992, vol. 28, no. 9, pp. 1829–1832. (in Russ.)
4. Mittova I. Ya., Sviridova V. V., Fetisova S. V. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1990, vol. 26, no. 10, pp. 2013–2016. (in Russ.)
5. Mittova I. Ya., Sviridova V. V., Fetisova S. V. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1991, vol. 27, no. 12, pp. 2488–2490. (in Russ.)
6. Mittova I. Ya., Pshestanchik V. R., Malyshev O. M. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1992, vol. 28, no. 5, pp. 2041–2044. (in Russ.)
7. Mittova I. Ya., Sviridova V. V., Koljukaeva I. A. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1989, vol. 25, no. 12, pp. 1954–1958. (in Russ.)
8. Mittova I. Ya., Pshestanchik V. R., Soshnikov V. V. Doklady chemistry [Reports of the Russian Academy of Sciences], 1997, vol. 354, no. 3, pp. 343–345. (in Russ.)
9. Mittova I. Ya., Soshnikov V. V., Kashkarov V. M., Pshestanchik V. R. Neorganicheskie Materialy [Inorganic Materials], 1999, vol. 35, no. 1, pp. 13–16. (in Russ.)
10. Mittova I. Ya. Vestnik VGU. Serija: Himija, biologija [Bulletin of the VSU. Series: Chemistry, Biology], 2000, no. 2, pp. 5–12. (in Russ.)
11. Mittova I. Ya. Inorganic Materials, 2014, vol. 50, no. 9, pp. 874–881. DOI: https://doi.org/10.1134/S0020168514090088
12. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F. Doklady chemistry [Reports of the Russian Academy of Sciences], 1996, vol. 349, no. 5, pp. 641–643. (in Russ.)
13. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F., Konstantinov A. E. Poverhnost' [Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques], 1996, no. 8, pp. 17–22. (in Russ.)
14. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F. Russian Jjournal of Inorganic Chemistry, 1997, vol. 42, no. 2, pp. 182–186. (in Russ.)
15. Mittova I. Ya., Kostryukov V. F., Pshestanchik V. R., Kashkarov V. M., Prokin A. N. Russian Journal of Inorganic Chemistry, 2001, vol. 46, no. 5, pp. 723–727.
16. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F. Doklady Chemistry, 2001, vol. 378, no. 4-6, pp. 165–167. DOI: https://doi.org/10.1023/a:1019238812687
17. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 1998, no. 4, pp. 499–506.
18. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F. Nelinejnye ehffekty v processah aktivirovannogo okisleniya GaAs [Nonlinear effects in the activated oxidation of GaAs]. Voronezh, Izdatelsko-poligraficheskij centr Voronezhskogo gosudarstvennogo universiteta, 2008, 160 p. (in Russ.)
19. Mittova I. Ya., Pshestanchik V. R., Pinyaeva O. A., Kostryukov V. F., Skorokhodova S. M. Doklady Chemistry, 2002, vol. 385, no. 4–6, pp. 212–214. DOI: https://doi.org/10.1023/a:1019998719921
20. Mittova I. Ya., Pshestanchik V. R., Pinyaeva O. A., Pukhova V. V., Skorokhodova S. M. Russian Journal of Inorganic Chemistry, 2003, vol. 48, no. 7, pp. 977–981.
21. Mittova I. Ya., Pukhova V. V., Pinyaeva O. A., Emelyanova A. A. Russian Microelectronics, 2001, vol. 30, no. 2, pp. 127–131. DOI: https://doi.org/10.1023/A:1009433927773
22. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F., Donkareva I. A., Saratova A. Yu. Russian Journal of Inorganic Chemistry, 2004, vol. 49, no. 7, pp. 991-994.
23. Mittova I. Ya., Kostryukov V. F., Donkareva I. A., Pshestanchik V. R., Lopatin S. I., Saratova A. Yu. Russian Journal of Inorganic Chemistry, 2005, vol. 50, no. 6, pp. 869–873.
24. Mittova I. Ya., Kostryukov V. F. Nanosystems: Physics, Chemistry, Mathematics, 2015, vol. 6, no. 3, pp. 424–434. DOI: https://doi.org/10.17586/2220-8054-2015-6-3-424-434 Available at: http://nanojournal.ifmo.ru/en/articles-2/volume6/6-3/chemistry/paper12/
25. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F., Donkareva I. A. Doklady chemistry, 2002, vol. 386, no. 4–6, pp. 258–260. DOI: https://doi.org/10.1023/A:1020731005579
26. Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F., Donkareva I. A. Russian Jjournal of Inorganic Chemistry, 2003, vol. 48, no. 4, pp. 480–482.
27. Kostryukov V. F., Pshestanchik V. R., Donkareva I. A., Agapov B. L., Mittova I. Ya., Lopatin S. I. Russian Journal of Inorganic Chemistry, 2007, vol. 52, no. 10, pp. 1498–1502. DOI: https://doi.org/10.1134/S0036023607100038
28. Kostryukov V. F. Condensed Matter and Interphase, 2008, vol. 10, no. 2, pp. 122–131. Available at: http://www.kcmf.vsu.ru/resources/t_10_2_2008_005.pdf (in Russ.)
29. Mittova I. Ya., Kostryukov V. F., Pshestanchik V. R., Donkareva I. A., Agapov B. L. Russian Journal of Iinorganic Chemistry, 2008, vol. 53, no. 7, pp. 1018–1023. DOI: https://doi.org/10.1134/S0036023608070085
30. Kostryukov V. F., Donkareva I. A., Pshestanchik V. R., Agapov B. L., Mittova I. Ya., Lopatin S. I. Russian Journal of Inorganic Chemistry, 2008, vol. 53, no. 8, pp. 1273–1277. DOI: https://doi.org/10.1134/S0036023608080056
31. Kazenas E. K. Termodinamika isparenija oksidov [Thermodynamics of Evaporation of Oxides], Moscow, LKI Publ., 2007, 474 p. (in Russ.)
32. Mittova I. Ya., Lopatin S. I., Pshestanchik V. R., Kostryukov V. F., Sergeeva A. V., Penskoi P. K. Russian Journal of Inorganic Chemistry, 2005, vol. 50, no. 10, pp. 1488–1491.
33. Penskoi P. K., Kostryukov V. F., Pshestanchik V. R., Mittova I. Ya., Kutsev S. V., Kuznetsova I. V. Russian Journal of Inorganic Chemistry, 2009, vol. 54, no. 10, pp. 1564–1570. DOI: https://doi.org/10.1134/S0036023609100118
34. Kozhevnikova T. V., Penskoi P. K., Kostryukov V. F., Mittova I. Y., Kuznetsova I. V., Kutsev S. V. Russian Journal of Inorganic Chemistry, 2010, vol. 55, no. 12, pp. 1857–1862. DOI: https://doi.org/10.1134/S0036023610120077
35. Penskoi P. K., Kostryukov V. F., Pshestanchik V. R., Mittova I. Ya. Doklady Chemistry, 2007, vol. 414, no. 2, pp. 152–154. DOI: https://doi.org/10.1134/S0012500807060055
36. Penskoi P. K., Pshestanchik V. R., Kostryukov V. F., Agapov B. L., Mittova I. Ya., Kuznetsova I. V. Russian Journal of Inorganic Chemistry, 2008, vol. 53, no. 2, pp. 186–191. DOI: https://doi.org/10.1007/s11502-008-2006-0
37. Penskoi P. K., Mittova I. Ya., Kostryukov V. F., Kononova E. Yu., Reutova E. A. Condensed Matter and Interphase, 2008, vol. 10, no. 3, pp. 236–243. Available at: http://www.kcmf.vsu.ru/resources/t_10_3_2008_005.pdf (in Russ.)
38. Kozhevnikova T. V., Penskoi P. K., Kostryukov V. F., Mittova I. Ya., Agapov B. L., Kuznetsova I. V., Kutsev S. V. Condensed Matter and Interphase, 2010, vol. 12, no. 3, pp. 212–225. Available at: http://www.kcmf.vsu.ru/resources/t_12_3_2010_003.pdf (in Russ.).
39. Kostryukov V. F., Mittova I. Ya. Patent RF, no. 2538415, 2015. (in Russ.)
40. Kostryukov V. F., Mittova I. Ya. Patent RF, no. 2632261, 2017. (in Russ.)
41. Mittova I. Ya., Tomina E. V., Samsonov A. A., Lukin A. N., Simonov S. P. Inorganic Materials, 2005, vol. 41, no. 4, pp. 323–330. DOI: https://doi.org/10.1007/s10789-005-0132-y
42. Mittova I. Ya., Samsonov A. A. Inorganic Materials, 2006, vol. 42, no. 8, pp. 819–825. DOI: https://doi.org/10.1134/S0020168506080024
43. Ievlev V. M., Mittova I. Ya., Samsonov A. A., Tominа E. V., Kashkarov V. M. Doklady Chemistry, 2007, vol. 417, no. 2, pp. 277–281. DOI: https://doi.org/10.1134/S0012500807120014
44. Samsonov A. A., Mittova I. Y., Tomina E. V., Lukin A. N., Valyukhov D. P. Inorganic Materials, 2011, vol. 47, no. 2, pp. 100–106. DOI: https://doi.org/10.1134/S0020168511020154
45. Mittova I. Ya., Shvets V. A., Tomina E. V., Samsonov A. A., Sladkopevtsev B. V., Tret’yakov N. N. Inorganic Materials, 2013, vol. 49, no. 10, pp. 963–970. DOI: https://doi.org/10.1134/S0020168513100075
46. Mittova I. Ya., Tominа E. V., Lapenko A. A., Sladkopevtsev B. V. Nanosystems: Physics, Chemistry, Mathematics, 2012, vol. 3, no. 2, pp. 116–138. (in Russ.)
47. Tretiakov N. N., Mittova I. Ya., Kozik V. V., Sladkopevtcev B. V., Kostryukov V. F., Studenikina Y. I. Russian Physics Journal, 2014, vol. 57, no. 7/2, pp. 186–191. (in Russ.)
48. Mittova I. Ya., Tret’yakov N. N., Kostryukov V. F., Sladkopevtsev B. V. Russian Journal of General Chemistry, 2015, vol. 85, no. 4, pp. 796–801. DOI: https://doi.org/10.1134/S1070363215040040
49. Tret’yakov N. N., Shchedrina V. E., Sladkopevtsev B. V., Samsonov A. A., Mittova I. Ya. Condensed Matter and Interphase, 2016, vol. 18, no. 2, pp. 256–264. Available at: https://journals.vsu.ru/kcmf/article/view/132/119 (in Russ.)
50. Kostryukov V. F., Mittova I. Ya. Inorganic Materials, 2015, vol. 51, no. 5, pp. 479–483. DOI: https://doi.org/10.1134/S0020168515040056
51. Kostryukov V. F., Mittova I. Ya., Dimitrenko A. A. Inorganic Materials, 2017, vol. 53, no. 5, pp. 451–456. DOI: https://doi.org/10.1134/S0020168517050132