LOCAL PARAMETERS OF THE SURFACE ROUGHNESS OF ELECTROCHEMICALLY DEALLOYED Ag-Pd ALLOYS

  • Eugenia V. Bedova postgraduate, Physical Chemistry Department, Voronezh State University, Voronezh, Russia; tel.: +7(473) 2208538, e-mail: iev.vsu@mail.ru
  • Margarita V. Grechkina Leading Engineer, Semiconductor Physics and Microelectronics Department, Voronezh State University, Voronezh, Russia; tel.: +7(473) 2208481, e-mail: grechkina_m@mail.ru
  • Oleg A. Kozaderov Dr. Sci. (Chem.), Associate Professor, Physical Chemistry Department, Voronezh State University, Voronezh, Russia; tel.: +7(473) 2208538; e-mail: ok@chem.vsu.ru
Keywords: dealloying, Ag-Pd alloys, surface roughening, SEM, AFM.

Abstract

Local characteristics of surface roughness of the polycrystalline Ag-Pd solid solutions (4 and 8 at. % Pd) which underwent potentiostatic electrochemical dealloying in an acidic nitrate aqueous solution were determined by scanning electron and atomic force microscopy. A qualitative analysis of the SEM and AFM micrographs demonstrated substantial morphological roughening of the surface of Ag-Pd alloys. This results from the formation of hollows and cracks caused by selective leaching of electronegative silver and recrystallization of electropositive palladium into its highly-developed phase.  A quantitative analysis of the AFM-data allowed us to determine the numerical values of the main local roughness characteristics of anodically modified alloys.  The negative value of the coefficient of surface asymmetry indicates the formation of deep cavities during the dealloying process.  The recorded mean roughness generally depends on the AFM-scanning zone, but it stabilizes if the scan zone exceeds several tens of micrometers. The roughness of dealloyed Ag-Pd systems is of micro- and nano-size and increases with anodic potential and electric charge of the electrochemical modification of both studied Ag4Pd and Ag8Pd alloys.  This effect can be accounted for by a significant rise in the anodic dissolution rate of silver from the alloys in the overcritical region of polarization, resulting in the formation of deeper surface defects.  An increase in the average height of surface irregularities with modification time conforms to the square root law, confirming the non-stationary mass transfer kinetics of the selective dissolution process. Variation of the anodic potential and electric charge makes it possible to find the optimal conditions for the electrochemical synthesis of electrode Ag-Pd materials with given values of arithmetic mean and root-mean-square roughness.  The assumption that harmonic sinusoidal function represents the Ag-Pd surface microprofile proved the linear dependence of the roughness factor on dealloying time.

Downloads

Download data is not yet available.

References

1. Bard A. J., Stratmann M., Frankel G. S. Encyclopedia of Electrochemistry. Vol. 4. Corrosion and Oxide Films. Weinheim, Wiley-VCH, 2003, 745 p.
2. Landolt D. Corrosion and Surface Chemistry of Metals. EPFL Press, 2007, 632 p.
3. Kaesche H. Corrosion of Metals. Physicochemical Principles and Current Problems. Berlin, Springer-Verlag, 2003, 601 p.
4. Marshakov I. K., Vvedenskii A. V., Kondrashin V. Yu., Bokov G. A. Anodnoe rastvorenie i selektivnaya korroziya splavov [Anodic Dissolution and Selective Corrosion of Alloys]. Voronezh, VSU Publ., 1988, 208 p. (in Russ.)
5. Zhang Z., Wang Y., Qi Z., Somsen C., Wang X., Zhao C. J. Mater. Chem., 2009, vol. 19, p. 6042-6050. DOI: https://doi.org/10.1039/B904052H
6. Kong Q., Lian L., Liu Y., Zhang J., Wang L., Feng W. Microporous and Mesoporous Materials, 2015, vol. 208, no. 5, pp. 152-159. DOI: https://doi.org/10.1039/B904052H 10.1016/j.micromeso.2015.01.017
7. Zhang Z., Wang Y., Qi Z., Zhang W., Qin J., Frenzel J. J. Phys. Chem. C, 2009, vol. 113, no. 29, pp. 12629-12636. DOI: https://doi.org/10.1039/B904052H 10.1021/jp811445a
8. Yeh W. J., Chava S. J. Vac. Sci. Tech. B: Microelectronics and Nanometer Structures, 2009, vol. 27, no. 2, pp. 923-927. DOI: https://doi.org/10.1039/B904052H 10.1116/1.3032903
9. Erlebacher J., Aziz M. J., Karma A., Dimitrov N., Sieradzki K. Nature, 2001, vol. 410, no. 6827, pp. 450-453. DOI: https://doi.org/10.1039/B904052H 10.1038/35068529
10. Detsi E., Schootbrugge M., Punzhin S., Onck P.R., Hosson J. T. M. Scripta Materialia, 2011, vol. 64, pp. 319-322. DOI: https://doi.org/10.1039/B904052H 10.1016/j.scriptamat.2010.10.023
11. Hakamada M., Mabuchi M. Materials Transactions, 2009, vol. 50, no. 3, p. 431-435. DOI: https://doi.org/10.1039/B904052H 10.2320/matertrans.MBW200825
12. Bard A. J., Faulkner L. R. Electrochemical Methods. Fundamentals and Applications. New York, J. Wiley&Sons, 2000, 856 p.
13. McNaught A. D., Wilkinson A. Compendium of Chemical Terminology. The Gold Book. New York, Blackwell Science, 1997, 464 p.
14. Trasatti S., Petrii O. A. Pure Appl. Chem., 1991, vol. 63, no. 5, pp. 711-734. DOI: https://doi.org/10.1039/B904052H 10.1351/pac199163050711
15. Arutyunov P. A., Tolstikhina A.L., Demidov V. N. // Zavodskaya laboratoriya. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 1999, vol. 65, no. 9, pp. 27-37. (in Russ.)
16. Kozaderov O. A., Dorokhov A. V., Vvedenskii A. V. Protection of Metals and Physical Chemistry of Surfaces, 2012, vol. 48, no. 4, pp. 411-418. DOI: https://doi.org/10.1039/B904052H 10.1134/S2070205112040089
17. Shcheblykina G. E., Bobrinskaya E. V., Vvedenskii A. V. Protection of Metals, 1998, vol. 34, no. 1, pp. 6-9. (in Russ.)
18. Kozaderov O. A. Diss. doct. chem. nauk. Voronezh, 2016. 361 p. (in Russ.)
19. Tong W. M., Williams R. S. Ann. Rev. Phys. Chem., 1994, vol. 45, pp. 401-438. DOI: https://doi.org/10.1039/B904052H 10.1146/annurev.pc.45.100194.002153
20. Collins G. W., Letts S. A., Fearon E. M., McEachern R. L., Bernat T. P. Phys. Rev. Lett., 1994, vol. 73, no. 5, pp. 708-711. DOI: https://doi.org/10.1039/B904052H 10.1103/PhysRevLett.73.708
21. Kozaderov O. A., Vvedenskii A. V. Massoperenos i fazoobrazovaniye pri anodnom selektivnom rastvorenii gomogennykh splavov [Mass transfer and phase formation during anodic selective dissolution of homogeneous alloys]. Voronezh, Nauchnaya kniga Publ., 2014, 288 p. (in Russ.)
22. Ikonnikova E. V, Grechkina M. V, Kozaderov O. A. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2014, no. 1, pp. 34-37. Available at: http://www.vestnik.vsu.ru/pdf/chembio/2014/01/2014-01-06.pdf (in Russ.)
Published
2018-12-13
How to Cite
Bedova, E. V., Grechkina, M. V., & Kozaderov, O. A. (2018). LOCAL PARAMETERS OF THE SURFACE ROUGHNESS OF ELECTROCHEMICALLY DEALLOYED Ag-Pd ALLOYS. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 20(4), 545-552. https://doi.org/10.17308/kcmf.2018.20/627
Section
Статьи