EFFECT OF L,α-ALANINE IMPURITY ON THE SPONTANEOUS EVOLUTION OF THE DOMAIN STRUCTURE OF TRIGLICINE SULPHATE NEAR THE CURIE POINT

  • Olga M. Golitsyna Cand. Sci. (Phys.-Math.), Assistant Professor, Voronezh State University, Voronezh, Russia; tel.: +7 (473) 2208625, e-mail: golitsynaom@yandex.ru
  • Sergey N. Drozhdin Dr. Sci. (Phys.-Math.), Full Professor, Head of Department, Voronezh State University, Voronezh, Russia; tel.: +7 (919) 1824460, e-mail: drozhdin@phys.vsu.ru
  • Valeriya O. Lesnikova Graduate Student, Voronezh State University, Voronezh, Russia; tel.: +7 (473) 2208625, e-mail: chulakovavo@mail.ru
Keywords: atomic force microscopy, triglycine sulfate, L,α-alanine, domain structure, Curie point, kinetics, coefficient of unipolarity, velocity of domain boundaries, domain perimeter.

Abstract

Using the atomic force microscopy method in the piezoelectric response mode, the evolution of the nonequilibrium domain structure of pure triglycine sulfate (TGS) crystals and doped with an L, α-alanine (ATGS) impurity was studied near the phase transition temperature over the interval ΔТС = ТСТ = 1 К. In both crystals the total number of domains N, the total perimeter of domain boundaries L and also the dielectric constant ε, measured in a weak ac electric field, decrease exponentially upon time. The ruggedness of the domain boundaries in the ATGS crystal persists over time, leading to an increase of the average domain perimeter L / N. The average velocity of spontaneous lateral movement of domain boundaries in a TGS crystal is less than in ATGS, due to the damping influence of defects. Near TC, both crystals are open systems with a non-conservative order parameter, and the development of the domain structure occurs with a change of the surface charge. With distance from the TC, the state with a conserved order parameter is reached faster in ATGS crystal.

Downloads

Download data is not yet available.

References

Lines M. E. and Glass A. M. Principle and Applications of Ferroelectrics and Related Materials. New York, Clarendon, 1982, 680 p.
2. Cedrik M. S. Fizicheskie svojstva kristallov semejstva triglicinsul'fata [The Physical Properties of the Triglycine Sulfate Family of Crystals.]. Minsk, Nauka i Tekhnika Publ., 1986, 216 p. (in Russ.)
3. Galstyan G. T., Rez I. S., Rejzer M. Yu. Fizika Tverdogo Tela [Physics of the Solid State], 1982, vol. 24, pp. 2186-2190. (in Russ.)
4. Drozhdin S. N., Golitsyna O. M., Nikishina A. I., et al. Fizika Tverdogo Tela [Physics of the Solid State], 2006, vol. 48, iss. 3, pp. 532–536. DOI: https://doi.org/10.1134/S106378340603019X
5. Golitsyna O. M., Drozhdin S. N., Chulakova V. O., Grechkina M. N. Ferroelectrics, 2017, vol. 506, p. 127. DOI: https://doi.org/10.1080/00150193/2017.1282286
6. Golitsyna O. M., Drozhdin S. N., Korobova A. D., Chulakova V. O. Condensed Matter and Interphases, 2017, vol. 19, no. 1, p. 42. DOI: https://doi.org/10.17308/kcmf.2017.19/175 (in Russ.)
7. Tihomirova N. A., Ginzberg A. V., Doncova L. I., et al. Fizika Tverdogo Tela [Physics of the Solid State], 1986, vol. 28, iss. 3, pp. 3055-3058. (in Russ.)
8. Konstantinova V. P., Stankovska Y A. Kristallografiya [Crystallography Reports], 1971, vol. 16, pp. 158-163. (in Russ.)
9. Moravec F., Konstantinova V. P. Kristallografiya [Crystallography Reports], 1968, vol. 13, pp. 284-289. (in Russ.)
10. Doncova L. I., Tihomirova N. A. Pis'ma v ZHEHTF [Technical Physics Letters], 1985, vol. 41, pp. 183-185. (in Russ.)
11. Novik V. K., Lotonov A. M., Gavrilova N. D. Fizika Tverdogo Tela [Physics of the Solid State], 2009, vol. 51, iss. 7, pp. 1414–1419. DOI: https://doi.org/10.1134/S1063783409070221
12. Drozhdin S. N., Golitsyna O. M. Fizika Tverdogo Tela [Physics of the Solid State], 2012, vol. 54, iss. 5, pp. 905–910. DOI: https://doi.org/10.1134/S1063783412050071
13. Likodimos V., Labardi V., Allegrini M. Phys. Review B, 2000, vol. 61, no. 21, pp. 14440-1447. DOI: https://doi.org/10.1103/physrevb.61.14440
14. Golitsyna O. M., Grechkina M. V., Drozhdin S. N., Chulakova V. O. Condensed Matter and Interphases, 2016, vol. 18, no. 4, pp. 494-504. Available at: http://www.kcmf.vsu.ru/article.php?l=ru&aid=776 (in Russ.)
15. Bray A. J. Advances in Physics, 1994, vol. 43, pp. 357-459. DOI: http://dx.doi.org/10.1080/00018739400101505
16. Oono Y., Puri S. Phys. Review Letters, 1987, vol. 58, no. 8, pр. 836-839. DOI: https://doi.org/10.1103/physrevlett.58.836
17. Schins A. G., Arts A. F. M., de Wijn H. W. Phys. Review Letters, 1993, vol. 70, pр. 2340-2343. DOI: https://doi.org/10.1103/physrevlett.70.2340
18. Abplanalp M., Eng L. M., Günter P. Appl. Phys. A, 1998, vol. 66, pр. S231-S234. DOI: https://doi.org/10.1007/s003390051136
19. Nakatani N. Japan. J. of Appl. Phys., 1985, vol. 24, no. 7, pр. L528-L530. DOI: https://doi.org/10.1143/jjap.24.l528
20. Likodimos V., Orlik X. K., Pardi L., et al. J. of Applied Physics, 2000, vol. 87, pp. 443- 451. DOI: https://doi.org/10.1063/1.371882
Published
2018-12-13
How to Cite
Golitsyna, O. M., Drozhdin, S. N., & Lesnikova, V. O. (2018). EFFECT OF L,α-ALANINE IMPURITY ON THE SPONTANEOUS EVOLUTION OF THE DOMAIN STRUCTURE OF TRIGLICINE SULPHATE NEAR THE CURIE POINT. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 20(4), 564-573. https://doi.org/10.17308/kcmf.2018.20/630
Section
Статьи