THE PHASE DIAGRAM OF THE FeGa2Se4-FeIn2Se4 SYSTEM AND THE CRYSTAL STRUCTURE OF FeGaInSe4

  • Faik M. Mammadov PhD (in Chem.), Аssistance Professor, Leading Researcher, Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; e-mail: faikmamadov@mail.ru
  • Samira Z. Imamaliyeva PhD (in Chem.), Assistance Professor, Senior Researcher, Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; e-mail: samira9597a@gmail.com
  • Imamaddin R. Amiraslanov Doctor (in Phys.), Professor, Head of Laboratory, Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; e-mail: iamiraslan@gmail.com
  • Mahammad B. Babanly Doctor (in Chem.), Deputy-Director of Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; e-mail: babanlymb@gmail.com
Keywords: FeGa2Se4-FeIn2Se4 system, phase diagram, solid solutions, crystal structure of FeGaInSe4, Rietveld method.

Abstract

The compounds of the MB2X4 type (M-Mn, Fe, Co, Ni, B-Ga, In, Sb, Bi; X- S, Se, Te) exhibit the phenomenon of electron- or optically-controlled magnetism; therefore, they are very promising for creation of lasers, modulators of light, photodetectors and other magnetic field controllable functional devices. Recent studies have shown that the range of functional characteristics of these compounds can be substantially improved and expanded due the changing the composition of these compounds and the obtaining solid solutions of various types of substitution. The above-mentioned shows the relevance of researches aimed to obtain and study the properties of solid solutions based on the MB2X4 compounds.

The development and optimization of processes for the preparation of new complex phases are based on the data on phase equilibria and thermodynamic characteristics of the corresponding system.

The aim of the present study was determining the phase relations in the FeGa2Se4-FeIn2Se4  system. We used the differential thermal analysis (DTA) and X-ray diffraction (XRD) in order to analyze the samples of the system. The temperatures of the thermal effects were determined using a NETZSCH 404 F1 Pegasus differential scanning calorimeter within room temperature and ~1300 K. The phase composition of the powdered samples was identified by powder X-ray diffraction D2 Phaser diffractometer at room temperature. The definition and refinement of the structure, as well as calculation of the unit cell parameters of intermediate alloys, were carried out by the Rietveld method using Topas- 4.2 software.

It is established that the studied system is quasi-binary, and characterized by the presence of the distectic and eutectic equilibria, as well as the formation of broad areas of solid solutions FeGa2Se4 (a-phase) and FeIn2Se4 (b-phase). b-phase with composition of FeGaInSe4 melts congruently at 1222 K and crystallizes in the trigoinal system: Sp.gr. R3m, а = 0.39290(1) nm, с = 3.8542(6) nm, V = 515.28 (15) nm3.

Using the powder diffraction data, the occupation of the crystallographic positions in FeGaInSe4 was determined by the Rietveld method. It was shown that the occupation of the crystallographic positions in FeGaInSe4 qualitatively differs from FeIn2Se4.

Obtained experimental results can be used for choosing the composition of solution-melt for the growth of the high-quality crystals of intermediate phases which are of interest as magnetic semiconductors.

 

ACKNOWLEDGMENTS

The work has been carried out within the framework of the international joint research laboratory “Advanced Materials for Spintronics and Quantum Computing” (AMSQC) established between Institute of Catalysis and Inorganic Chemistry of ANAS (Azerbaijan) and Donostia International Physics Center (Basque Country, Spain).

 

Downloads

Download data is not yet available.

References

1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. Nature, 2005, vol. 438, pp. 197–200. DOI: https://doi.org/10.1038/nature04233
2. Kane C. L. and Moore J. E. Physics World, 2011, vol. 24, pp. 3236. DOI: https://doi.org/10.1088/2058-7058/24/02/36
3. Moore J. E. Nature, 2010, vol. 464, pp. 194-198. DOI: https://doi.org/10.1038/nature08916
4. Babanly M. B., Chulkov E. V., Aliev Z. S., Shevel’kov A. V., and Amiraslanov I. R. Russ. J. Inorg. Chem., 2017, vol. 62, no. 13, pp. 1703–1729. DOI: https://doi.org/10.1134/S0036023617130034
5. Eremeev S. V., Landolt G., Menshchikova T. V., Slomski V., Koroteev Y. M., Aliev Z. S, Babanly M. B., Henk J., Ernst A., Patthey L., Khajetoorians A., Wiebe J., Echenique P. M., Tsirkin S. S., Amiraslanov I. R., Dil J. H., Chulkov E. V. Nature Communications, 2012, vol. 3. pp. 635-642. DOI: https://doi.org/10.1038/ncomms1638
6. Okuda T., Maegawa T., Ye M., Shirai K., Warashina T., Miyamoto K., Kuroda K., Arita M., Aliev Z. S., Amiraslanov I. R., Babanly M. B., Chulkov E. V., Eremeev S. V., Kimura A., Namatame H., Taniguchi M. Physical Review Letters, 2013, vol. 111, pp..206803(5). DOI: https://doi.org/10.1103/PhysRevLett.111.206803
7. Niesner D., Otto S., Hermann V., Fauster Th., Menshchikova T. V., Eremeev S. V., Aliev Z. S., Amiraslanov I. R., Echenique P. M., Babanly M. B., Chulkov E. V. Physical Review B, 2014, vol. 89, pp. 081404(5). DOI: https://doi.org/10.1103/PhysRevB.89.081404
8. Papagno M., Eremeev S., Fujii J., Aliev Z. S., Babanly M. B., Mahatha S. Vobornik I., Mamedov N., Pacile D., Chulkov E. ACS Nano, 2016, vol. 10, pp. 3518-3524. DOI: https://doi.org/10.1021/acsnano.5b07750
9. Haeuseler H., Srivastava S. K. Zeitschrift für Kristallographie, 2000, vol. 215, pp. 205-221. DOI: https://doi.org/10.1524/zkri.2000.215.4.205
10. Ranmohotti K. G. S., Djieutedjeu H., Lopez J., Page A., Haldolaarachchige N., Chi H., Sahoo P., Uher C., Young D., Poudeu P. F. P. J. of the American Chemical Society, 2015, vol. 137, no. 2, pp. 691-698. DOI: https://doi.org/10.1021/ja5084255
11. Djieutedjeu H, Makongo J. P. A., Rotaru A., Palasyuk A., Takas N. J, Zhou X., Ranmohotti K. G. S., Spinu L., Uher C., Poudeu P. F. P. European Journal of Inorganic Chemistry, 2011, vol. 26, pp. 3969-3977. DOI: https://doi.org/10.1002/ejic.201100364
12. Bodnar I. V., Viktorov I. A., Pavlyukovets S. A. Inorganic Materials, 2010, vol. 46, no. 6, pp. 604–608. DOI: https://doi.org/10.1134/S0020168510060087
13. Cadenasa R., Quintero M., Quintero E., Tovar R., Morocoima M., Gonzalez J., Ruiza J., Brotoc J. M., Rakotoc H., Woolleyd J. C., Lamarche G. Physica B, 2004, vol. 346–347, pp. 413–415. DOI: https://doi.org/10.1016/j.physb.2004.01.117
14. Niftiyev N. N., Mamedov F. M., Quseynov V. I., Kurbanov S. Sh. Semiconductors, 2018, vol. 52, no. 6, pp. 683–685. DOI: https://doi.org/10.1134/s1063782618060167
15. Moroz N. A., Lopez J. S., Djieutedjeu H., Ranmohotti K. G. S., Olvera A, Ren P., Page A., Takas N. J., Uher C., Poudeu P. F. P. Chemistry of Materials, 2016, vol. 28, no. 23, pp. 8570-8579. DOI: https://doi.org/10.1021/acs.chemmater.6b03293
16. Djieutedjeu H., Zhou X., Chi X., Haldolaarachchige N., Ranmohotti K. G. S.javascript:void(0), Uher C., Young D. Journal of Materials Chemistry C, 2014, vol. 2, pp. 6199-6210. DOI: https://doi.org/10.1039/c4tc00672k
17. Ranmohotti K. G. S., Djieutedjeu H., Poudeu P. F. P. Journal of the American Chemical Society, 2012, vol. 134, no. (34), pp. 14033-14042. DOI: https://doi.org/10.1021/ja303952w
18. Bodnar I. V., Trukhanov S. V. Semiconductors, 2011, vol. 45, no. 11, pp. 1408–1413. DOI: https://doi.org/10.1134/s106378261111008x
19. Mamedov F. M., Niftiyev N. N. Semiconductors, 2016, vol. 50, no. 9, pp. 1203-1207. DOI: https://doi.org/10.1134/s1063782616090165
20. Zlomanov V. P., Khoviv A. M. and Zavrazhnov A. Yu. Physicochemical Analysis and Synthesis of Nonstoichiometric Solids. In: InTech. Materials Science - Advanced Topics 2013, pp. 103-128. DOI: https://doi.org/10.5772/54815
21. Alverdiyev I. J., Abbasova V. A., Yusibov Y. A., Babanly M. B. Condenced Matter and Interphase, 2017, vol. 19, no. 1, pp. 22–26. DOI: https://doi.org/10.17308/kcmf.2017.19/172
22. Imamaliyeva S. Z. Condenced Matter and Interphase, 2018, vol. 20, no. 3, pp. 332-347. DOI: https://doi.org/10.17308/kcmf.2018.20/570
23. Babanly N. B., Imamaliyeva S. Z., Yusibov Y. A., Taghiyev D. B., Babanly M. B. Journal of Solid State Electrochemistry, 2018, vol. 22, pp. 1143-1148. DOI: https://doi.org/10.1007/s10008-017-3853-3
24. Mashadieva L. F., Gasanova Z. T., Yusibov Yu. A., Babanly M.B., Inorganic Materials, 2018, vol. 54, No. 1, pp. 8–16. DOI: https: //doi.org/10.1134/S0020168518010090
25. Allazov M. R., Babayeva P. K. Inorganic Materials, 1979, vol. 15, no. 7, pp. 1177-1180. (in Russ.)
26. Pauliukavets S. A., Bychek I. V., Patapovich M. P. Inorganic Materials: Applied Research, 2018, vol. 9, no. 2, pp. 207–211. DOI: https://doi.org/10.1134/S2075113318020223
27. Pardo M.-P., Flahaut J. Mat.Res.Bull., 1980, vol. 15, pp. 1043-1048. DOI: https://doi.org/10.1016/0025-5408(80)90063-x
28. Babayeva B. K., Rustamov P. G. In. Issledovaniya v oblasti neorganicheskoy i fizicheskoy himii [Research in the field of inorganic and physical chemistry]. Baku, Elm Publ., 1977. pp. 264-269 (in Russ.)
29. Koneshova T. I. Russian Journal of Inorganic Chemistry, 2004, vol. 49, no. 5, pp. 778-779.
30. Reil, S. and Haeuseler, H., J. Alloys Compd., 1998, vol. 270, pp.83–87. DOI: https://doi.org/10.1016/S0925-8388(98)00351-X
31. Emsley J. The Elements. Oxford University Press. 1998.
Published
2018-12-13
How to Cite
Mammadov, F. M., Imamaliyeva, S. Z., Amiraslanov, I. R., & Babanly, M. B. (2018). THE PHASE DIAGRAM OF THE FeGa2Se4-FeIn2Se4 SYSTEM AND THE CRYSTAL STRUCTURE OF FeGaInSe4. Condensed Matter and Interphases, 20(4), 604-610. https://doi.org/10.17308/kcmf.2018.20/633
Section
Статьи