Formation of Cu2SnS3 and Cu2SnSe3 thin films
Abstract
Objective. The study shows the possibility of Cu2SnS3 and Cu2SnSe3 synthesis on glass substrates by annealing a Cu2Sn thin metal film in chalcogen vapours in a vacuum graphite chamber of the quasi-closed volume type.
Methods and methodology. The initial metal films were deposited by thermal sputtering of a Cu2Sn alloy. It was shown by X-ray microanalysis that the elemental composition of the films corresponds to the stoichiometry of the Cu2SnS3 and Cu2SnSe3 compounds. By X-ray diffraction, it was found that the obtained chalcogenide films have a sphalerite-like crystal structure.
Results. Diffractograms of Cu2SnS3 and Cu2SnSe3 chalcogenide films contain peaks characteristic of the cubic symmetry group F-43m. These peaks correspond to reflection planes (111), (220), and (311). Lattice constants for Cu2SnS3 and Cu2SnSe3 are 5.38 Å and 5.67 Å respectively. The activation energies of direct-gap transitions were determined by the method of IR-spectroscopy: Ea = 0.96 eV for Cu2SnS3 and Ea = 0.70 eV for Cu2SnSe3. The absorption coefficients for the Cu2SnS3 film is 2·105 cm–1, and for the Cu2SnSe3 film is 1·105 cm–1.
Conclusion. Similar values of lattice parameters of synthesized films and lattice parameters of ZnS and ZnSe crystals can contribute to the formation of functional elements of photoelectronics based on p-Cu2SnS3/n-ZnS and p-Cu2SnSe3/n-ZnSe heterojunctions.
SOURCE OF FINANCING
The reported study was supported by the Russian Foundation for Basic Research (grant No. 18-32-00971 – мол_а).
CONFLICT OF INTEREST
The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.
REFERENCES
- Milichko V. A., Shalin A. S., Mukhin I. S., et al. Usp., 2016, vol. 59, pp. 727–772. https://doi.org/10.3367/ufne.2016.02.037703
- Wesley Herche. Renewable and Sustainable Energy Reviews, 2017, vol. 77, pp. 590-595. https://doi.org/10.1016/j.rser.2017.04.028
- Rujun Suna, Daming Zhuang, Ming Zhao, et al. Solar Energy Materials and Solar Cells, 2018, vol. 174, pp. 42–49. https://doi.org/10.1016/j.solmat.2017.08.011
- Orletskii I. G., Mar’yanchuk P. D., Solovan M. N., et al. Physics of the Solid State, 2016. vol. 58, no. 5, pp. 1058-1064. https://doi.org/10.1134/s1063783416050188
- Ren Y. Acta Universitatis Upsaliensis, Uppsala, 2017, 85 p. URL: https://uu.diva-portal.org/smash/get/diva2:1072439/FULLTEXT01.pdf
- Lokhande A. C. Solar Energy Materials and Solar Cells, August 2016, vol. 153, pp. 84-107. https://doi.org/10.1016/j.solmat.2016.04.003
- Shelke H. D., Lokhande A. C., Patil A. M., et al. Surfaces and Interfaces, 2017, vol. 9, pp. 238-244. https://doi.org/10.1016/j.surfin.2017.08.006
- Orletskii I. G., Solovan M. N., Pinna F., et al. Physics of the Solid State. 2017, vol. 59, no. 4, pp. 801-807. https://doi.org/10.1134/s1063783417040163
- Mingrui He. Journal of Alloys and Compounds, April 2017, vol. 701, pp. 901-908. https://doi.org/10.1016/j.jallcom.2017.01.191
- Pin-Wen, GuanShun-Li Shang, Greta Lindwall. Solar Energy, 2017, vol. 155, pp. 745-757. https://doi.org/10.1016/j.solener.2017.07.017
- Ju Yeon Lee. Solar Energy, 2017, vol. 145, pp. 27-32. https://doi.org/10.1016/j.solener.2016.09.041
- Subbotina, O. Y., Kishkoparov N. V., Frishberg I. V. High Temperature, 1999, vol. 37, no. 2, pp. 198–203. URL: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=2266&option_lang=rus (in Russ.)
- Budanov A. V., Vlasov Yu. N., Grechkina M. V., et al. Condensed Matter and Interphases, 2016, vol. 18, no. 4, pp. 481–486. URL: http://www.kcmf.vsu.ru/resources/t_18_4_2016_004.pdf (in Russ.)
- Zhang, Huang L. L., Zhu X. G., et al. Scripta Materialia, 2019, vol. 159, pp. 46–50. https://doi.org/10.1016/j.scriptamat.2018.09.010
- Lukashev P., Lambrecht W. R. L., Kotani T., Schilfgaarde M. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, p. 195202. https://doi.org/10.1103/physrevb.76.195202