Effect of pore size on phase transitions in rubidium tetrachlorozincate nanoparticles in porous glass matrices
Abstract
It is well known that below a certain temperature (Ti), local displacements of individual atoms from their original positions occur in ferroelectric crystals with incommensurate phases. They form a spatial wave with a length of l, which is incommensurate with the lattice period a, i.e. the l/a ratio is irrational. The wavelength increases as the temperature decreases. Near the phase transition temperature TC, it reaches a length comparable to the size of the ferroelectric domains, as in the model rubidium tetrachlorozincate crystal (Rb2ZnCl4).
In ultrafine Rb2ZnCl4 crystals, the increase in l is hindered by the size of the crystallite. Therefore, the physical properties of nanocrystalline rubidium tetrachlorozincate are expected to be considerably different from those of the bulk sample.
One of the methods for producing nanosized ferroelectric materials is a method based on embedding the material from a solution into porous matrices with nanometre-sized through-pores. We applied this method to study the effect of the size of ultrafine rubidium tetrachlorozincate crystallites on its dielectric properties and the phases occurring in the nanocrystallites.
For the experiment, we used samples of polycrystalline Rb2ZnCl4 and composites obtained by incorporation of Rb2ZnCl4 salt from aqueous solution into porous silicon oxide matrices with an average through-pore diameter of 46 and 5 nm (RS‑46 and RS-5, respectively). The temperature dependencies of their dielectric permittivity were studied within the range of 100 to 350 K. We determined the temperatures of transition to the incommensurate (Ti) and ferroelectric (TC) phases, as well as the mobility deceleration temperatures of ferroelectric domain boundaries in rubidium tetrachlorozincate nanocrystallites in the RS-46 composite. In Rb2ZnCl4 particles in the RS-5 composite, only the transition to the incommensurate phase occurs. In contrast to the bulk material, it shows features of the first-order phase transition.
Downloads
References
Cummins H. Z. Experimental studies of structurally incommensurate crystal phases. Physics Кeports. 1990;185(5-6): 211–409. https://doi.org/10.1016/0370-1573(90)90058-a
Gridnev S. A., Korotkov L. N. Disordered polar dielectrics. From crystal to dipole glass and chaos. Palmarium Academic Publishing; 2013. 170 p. Available at: https://w w w.elibrar y.ru/item.asp?id=26049698
Bagautdinov B. Sh., Shekhtman V. Sh. Evolution of the structure of Rb2ZnCl4 over the temperature range 4.2–310 K. Physics of the Solid State. 1999;41(6): 987- 993. https://doi.org/10.1134/1.1130929
Tarnavich V. V., Sidorkin A. S., Korotkova T. N., Rysiakiewicz-Pasek E., Korotkov L. N., Popravko N. G. “Restricted Geometry” Effect on Phase Transitions in KDP, ADP, and CDP Nanocrystals. Crystals. 2019;9(11): 593. https://doi.org/10.3390/cryst9110593
Mikhaleva E. A., Flerov I. N., Kartashev A. V., Gorev M. V., Molokeev M. S., Bogdanov E. V., Bondarev V. S., Korotkov L. N., Rysiakiewicz-Pasek E. Effect of restricted geometry and external pressure on the phase transitions in ammonium hydrogen sulfate confined in a nanoporous glass matrix. Journal of Materials Science. 2018;53(17): 12132–12144. https://doi.org/10.1007/s10853-018-2467-1
Naberezhnov A. A., Stukova E. V., Alekseeva O. A., Novikova S. A., Franz A. Effects Associated with Confined Geometry in Nanocomposites Based on Mesoporous 2D-SBA-15 and 3D-SBA-15 Matrices Containing Sodium Nitrite Nanoparticles. Technical Physics. 2019;64(12): 1866–1871. https://doi.org/10.1134/s106378421912020x
Beskrovny A. I., Vasilovskii S. G., Vakhrushev S. B., Kurdyukov D. A., Zvorykina O. I., Naberezhnov A. A., Okuneva N. M., Tovar M., Rysiakiewicz-Pasek E., Jaguś P. Temperature dependences of the order parameter for sodium nitrite embedded into porous glasses and opals. Physics of the Solid State. 2010;52(5): 1092–1097. https://doi.org/10.1134/s1063783410050410
Naberezhnov A. A., Vakhrushev S. B., Kumzerov Y. A., Fokin A. V. Mechanism of ferroelectric phase transition in ultra-dispersed sodium nitrite particles. Ferroelectrics. 2021;575(1): 75–83. https://doi.org/10.1080/00150193.2021.1888229
Nguyen H. T., Chu M. T. Structural and dielectric studies of three-phase composite containing multiwalled carbon nanotubes, nanodispersed silica AND KDP. Phase Transitions. 2020;93(10-11): 1080-1088. https://doi.org/10.1080/01411594.2020.1839753
Mikhaleva E. A., Flerov I. N., Bogdanov E. V., Bondarev V. S., Gorev M. V., Rysiakiewicz-Pasek E. Size effect on sensitivity to external pressure and caloric effects in TGS: ceramics and nanocomposites. Materials Today Communications. 2020;25: 101463. https://doi.org/10.1016/j.mtcomm.2020.101463
Kumzerov Y., Vakhrushev S. Nanostructures within porous materials. In: Encyclopedia of Nanoscience and Nanotechnology. Volume 10. H. S. Nalwa (ed.). New York: American Scientific Publishers; 2003. pp. 811–849.
Andreeva O. V., Obyknovennaja I. E. Nanoporous matrices NPS-7 and NPS-17 – possibilities of use in an optical experiment. Nanosystems: Physics, Chemistry, Mathematics. 2010;1(1): 37–53. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=15648759
Bruker AXS TOPAS V4. General profile and structure analysis software for powder diffraction data. User’s Manual. Karlsruhe, Germany: Bruker AXS; 2008.
Korotkov L. N., Stekleneva L. S., Flerov I. N., Mikhaleva E. A., Rysiakiewicz-Pasek E., Molokeev M. S., Bondarev V. S., Gorev M. V., Sysoev O. I. X-Ray, dielectric, and thermophysical studies of rubidium tetrachlorozincate inside porous glasses. Bulletin of the Russian Academy of Sciences: Physics. 2019;83(9): 1072–1076. https://doi.org/10.3103/s1062873819090132
Strukov B. A., Belov A. A., Gorshkov S. N., Kozhevnikov M. Ju. Thermal conductivity and heat capacity of Rb2ZnCl4 crystals in the region of the incommensurate phase. Bulletin of the Academy of Sciences of the USSR. Physical Series. 1991;55(3): 470–473. (In Russ.)
Gridnev S. A., Prasolov B. N., Gorbatenko V. V. On the phase in the domain wall of Rb2ZnCl4 near 150 K. Crystallography Reports. 1997;42(4): 670–673. Available at: https://w w w.elibrar y.ru/item.asp?id=13261163
Gridnev S. A., Shuvalov L. A., Gorbatenko V. V.,Rb 2ZnCl4. Ferroelectrics. 1993;140(1): 145–149. https://doi.org/10.1080/00150199308008277
Gridnev S. A., Shuvalov L. A., Gorbatenko V. V., Prasolov B. N. “Freezing” of domain structure in Rb2ZnCl4. Ferroelectrics. 1993;140(1): 145–149. https://doi.org/10.1080/00150199308008277
Korotkov L. N., Stekleneva L. S., Logoshina E. M., Pankova M. A. Dielectric response of Rb 2ZnCl4 within porous aluminum oxide. Ferroelectrics. 2020;567(1): 74–81. https://doi.org/10.1080/00150193.2020.1791589
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.