Mathematical modelling of vortex structures in the channel of an electrodialysis cell with ion-exchange membranes of different surface morphology
Abstract
One of the ways to obtain membranes with electroconvection as the dominant mechanism of ion transport is to optimise the surface of known brands of commercial heterogeneous membranes by changing their manufacturing technology. For example, the degree of dispersion of the ion-exchanger or the volume ratio of the ion-exchanger to inert binder can be changed. The aim of this study was to determine and theoretically analyse the fundamental correlations between the intensity of electroconvection and the surface morphology of ion-exchange membranes with different ion-exchanger particle content.
Тhe article presents a mathematical model of ion transport across the ion-exchange membrane/solution interface in the channel of an electrodialysis cell. The phenomenon of electroconvection in electromembrane systems (EMS) was modelled by solving two-dimensional Navier-Stokes equations for an incompressible liquid with no-slip boundary conditions and a set distribution of the electric body force. The body force distribution was set taking into account the real size of ionexchanger particles and the distance between them that determine the electrical heterogeneity of the surface of experimental ion-exchange membranes with different mass fractions of ion-exchange resin.
It was determined that in the numerical modelling, the most important parameters were the size of the sections of electrical heterogeneity of the membrane surface, the current density, and the length of the space charge region (SCR). Numerical calculations were presented to determine the vortex size depending on the current density and the degree of electrical heterogeneity of the membrane surface.
It was shown that an increase in the mass fraction of ion-exchange resin in the production of heterogeneous sulphocationexchange membranes resulted in a decrease in the step of electrical surface heterogeneity and promoted the formation of electroconvective vortices interacting with each other. Within the boundary conditions and approximations of the mathematical model, the vortex sizes reach their maximum value in the middle of the heterogeneity section L0.
Downloads
References
Zabolotskii V. I., Nikonenko V. V., Urtenov M. K., Lebedev K. A., Bugakov V. V. Electroconvection in systems with heterogeneous ion-exchange membranes. Russian Journal of Electrochemistry. 2012;48(7): 692–703. https://doi.org/10.1134/S102319351206016X
Zabolotsky V. I., Novak L., Kovalenko A. V., Nikonenko V. V., Urtenov M. Kh., Lebedev K. A., But A. Yu. Electroconvection in systems with heterogeneous ion-exchange membranes. Petroleum Chemistry. 2017;57(9): 779–789. https://doi.org/10.1134/S0965544117090109
Dukhin S. S., Mishchuk N. A. Intensification of electrodialysis based on electroosmosis of the second kind. Journal of Membrane Science. 1993;79(2-3): 199–210. https://doi.org/10.1016/0376-7388(93)85116-E
Mishchuk N. A. Electro-osmosis of the second kind near the heterogeneous ion-exchange membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998;140(1-3): 75–89. https://doi.org/10.1016/S0927-7757(98)00216-7
Rubinshtein I., Shtilman L. Voltage against current curves of cation-exchange membranes. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics. 1979;75: 231–246. https://doi.org/10.1039/F29797500231
Rubinstein I., Zaltzman B., Kedem O. Electric fields in and around ion-exchange membranes. Journal of Membrane Science. 1997;125(1): 17–21. https://doi.org/10.1016/S0376-7388(96)00194-9
Rubinshtein I., Zaltsman B., Pretz I., Linder C. Experimental Verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane. Russian Journal of Electrochemistry. 2002;38: 853–863. https://doi.org/10.1023/A:1016861711744
Zabolotskii V. I., Loza S. A., Sharafan M. V. Physicochemical properties of profiled heterogeneous ion-exchange membranes. Russian Journal of Electrochemistry. 2005;41(10): 1053–1060. https://doi.org/10.1007/s11175-005-0180-2
Pis’menskaya N. D. , Nikonenko V. V. , Mel’Nik N. A., Pourcelli G., Larchet G. Effect of the ion-exchange-embrane/solution interfacial characteristics on the mass transfer at severe current regimes. Russian Journal of Electrochemistry. 2012;48(6): 610–628. https://doi.org/10.1134/S1023193512060092
Zabolotsky V. I., Lebedev K. A., Vasilenko P. A., Kuzyakina M. V. Mathematical modeling of vortex structures during electroconvection in the channel of an electrodialyzer cell on model membranes with two conductive sections. Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation. 2019;16(1): 73–82. (In Russ.) https://doi:10.31429/vestnik-16-1-73-82
Newman J. S. Electrochemical systems. New Jersey: Prentice-Hall, Inc., Englewood Cliffs; 1973.432 p.
Roache P. J. Computational fluid dynamics. Hermosa Publishers; 1976. 446 p.
Vasil’eva V. I., Bityutskaya L. A., Zaichenko N. A. , Grechkina M. V., Botova T. S., Agapov B. L. Microscopic analysis of the surface morphology of ion-exchange membranes*. Sorbtsionnye i Khromatograficheskie Protsessy. 2008;8(2): 260-271. (In Russ.) http://www.chem.vsu.ru/sorbcr/images/pdf/20080210.pdf
Nikonenko V. V., Kovalenko A. V., Urtenov M. K., Pismenskaya N. D., Han J. Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination. 2014;342: 85−106. https://doi.org/10.1016/j.desal.2014.01.008
Zabolotskii V. I., Lebedev K. A., Lovtsov E. G. Mathematical model for the overlimiting state of an ion-exchange membrane system. Russian Journal of Electrochemistry. 2006;48(2):836–846. https://doi.org/10.1134/S1023193506080052
Nikonenko V. V., Mareev S. A., Pis’menskaya N. D., Uzdenova A. M., Kovalenko A. V., Urtenov M. Kh., Pourcelly G. Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (Review). Russian Journal of Electrochemistry. 2017;53: 1122–1144. https://doi.org/10.1134/S1023193517090099
Rubinstein S. M., Manukyan G., Staicu A.,Rubinstei I., Zaltzman B., Lammertink R. G. H., Mugele F., Wessling M. irect observation of a nonequilibrium electro-osmotic instability. Physical Review Letters. 2008;101: 236101. https://doi.org/10.1103/PhysRevLett.101.236101
Urtenov M. Kh. Boundary value problems for systems of nernst-planck-poisson equations (factorization, decomposition, models, numerical analysis)*. Krasnodar: KubGU Publ.; 1998. 126 p. (In Russ.)
Babeshko V. A., Zabolotskii V. I., Korzhenko N. M., Seidov R. R., Urtenov M. Kh. Stationary transport theory of binary electrolytes in the one-dimensional case: numerical analysis. Doklady Physical Chemistry. 1997;42(8): 836–846. Available at: https://www.elibrary.ru/item.asp?id=13268324
Zabolotskii V. I., Lebedev K. A., Urtenov M. K., Nikonenko V. V., Vasilenko P. A., Shaposhnik V. A., Vasil’eva V. I. A mathematical model describing voltammograms and transport numbers under intensive electrodialysis modes. Russian Journal of Electrochemistry. 2013;49( 4). 369–380. https://doi.org/10.1134/S1023193513040149
Kasparov M. A., Lebedev K. A. Mathematical model of ion transport through the interface ‘ionexchange membrane / strong electrolyte’. Ecological Bulletin of Scientific Centers of the Black Sea Economic Cooperation. 2017;14(4-1): 40–49. (In Russ., abstract in Eng.). Available at: https://vestnik.kubsu.ru/article/view/756
Zabolotsky V. I., Nikonenko V. V. Ion transport in membranes*. Moscow: Nauka Publ.; 1996. 392 p. (In Russ.)
Zabolotskiy V. I., But A. Yu., Vasil’eva V. I., Akberova E. M., Melnikov S. S. Ion transport and electrochemical stability of strongly basic anionexchange membranes under high current electrodialysis conditions. Journal of Membrane Science. 2017;526: 60–72. https://doi.org/10.1016/j.memsci.2016.12.028
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.