Relativistic model of interatomic interactions in condensed systems
Abstract
A method was proposed to describe the dynamics of systems of interacting atoms in terms of an auxiliary field. The field is equivalent to the specified interatomic potentials at rest, and represents the classical relativistic field under dynamic conditions. It was determined that for central interatomic potentials, allowing for the Fourier transform, the auxiliary field is a superposition of elementary fields satisfying the Klein-Gordon-Fock equation with complex mass parameters
Downloads
References
Uhlenbeck G. E., Ford G. W. Lectures in statistical mechanics. American Mathematical Society (1963). Providence: AMS; 1963. 171 p.
Ritz W., Einstein A. Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift. 1909; 10(9): 323–324.
Kac M. Some remarks on the use of probability in classical statistical mechanics. Bull. de l’Académie Royale de Belgique (Classe des Sciences). 1956;42(5): 356–361. https://doi.org/10.3406/barb.1956.68352
Synge J. L. The electromagnetic two-body problem. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1940;177(968): 118–139. http://dx.doi.org/10.1098/rspa.1940.0114
Driver R. D. A two-body problem of classical electrodynamics: the one-dimensional case. Annals of Physics. 1963;21(1): 122–142. http://dx.doi.org/10.1016/0003-4916(63)90227-6
Hsing D. K. Existence and uniqueness theorem for the one-dimensional backwards twobody problem of electrodynamics. Physical Review D. 1977;16(4): 974–982. https://doi.org/10.1103/physrevd.16.974
Hoag J. T.; Driver R. D. A delayed-advanced model for the electrodynamics two-body problem. Nonlinear analysis: Theory, Methods & Applications. 1990;15(2): 165–184. https://doi.org/10.1016/0362-546x(90)90120-6
Zakharov A. Yu. On physical principles and mathematical mechanisms of the phenomenon of irreversibility. Physica A: Statistical Mechanics and its Applications. 2019;525: 1289–1295. https://doi.org/10.1016/j.physa.2019.04.047
Zakharov A. Y., Zakharov M. A. Microscopic dynamic mechanism of irreversible thermodynamic equilibration of crystals. Quantum Reports. 2021;3(4): 724–730. https://doi.org/10.3390/quantum3040045
Khrennikov A. Yu. Interpretations of probability. Berlin – New York: Walter de Gruyter; 2009. 237 p. https://doi.org/10.1515/9783110213195
Borel E. Introduction géométrique à quelques théories physiques. Paris: Gauthier-Villars; 1914. 147 p.
Levy P. Specific problems of functional analysis*. Moscow: Nauka Publ., 1967. 511 p. (In Russ.)
Rowlinson J. S. C. A scientific history of intermolecular forces. Cambridge: Cambridge University Press; 2002. 343 p.
Kaplan I. G. Intermolecular interactions: physical picture, computational methods and model potentials. Chichester: Wiley; 2006. 375 p. https://doi.org/10.1002/047086334x
Stone A. The theory of intermolecular forces. Oxford: Oxford University Press; 2013. 352 p. https://doi.org/10.1093/acprof:oso/9780199672394.001.0001
Molecular dynamics method in physical chemistry*. (Ed. Yu. K. Tovbin). Moscow: Nauka Publ., 1996; 169 p. (In Russ.)
Kamberaj H. Molecular dynamics simulations in statistical physics: theory and applications. Cham: Springer; 2020. 470 p. https://doi.org/10.1007/978-3-030-35702-3
Kun Zhou, Bo Liu. Molecular dynamics simulation: fundamentals and applications. Amsterdam: Elsevier; 2022. 374 p. https://doi.org/10.1016/b978-0-12-816419-8.00006-4
Planck M. Zur Dynamik bewegter Systeme. Annalen der Physik. 1908;331(6): 1–34. https://doi.org/10.1002/andp.19083310602
Jüttner F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Annalen der Physik. 1911;339(5): 856–882. https://doi.org/10.1002/andp.19113390503
Jüttner F. Die dynamik eines bewegten Gases in der Relativtheorie. Annalen der Physik. 1911;340(6): 145–161. https://doi.org/10.1002/andp.19113400608
Synge J. L. The relativistic gas. Amsterdam: North-Holland; 1957. 119 p.
Tolman R. C. Thermodynamics and relativity. Bulletin of the American Mathematical Society. 1933;39(2): 49–74. https://doi.org/10.1090/s0002-9904-1933-05559-3
ter Haar D., Wergeland H. Thermodynamics and statistical mechanics in the special theory of relativity. Physics Reports. 1971;1(2): 31–54. https://doi.org/10.1016/0370-1573(71)90006-8
Nakamura T. K. Three views of a secret in relativistic thermodynamics. Progress of Theoretical Physics. 2012;128(3): 463–475. https://doi.org/10.1143/ptp.128.463
Chernikov N. A. Derivation of the equations of relativistic hydrodynamics from the relativistic transport equation. Physics Letters. 1963;5(2): 115–117. https://doi.org/10.1016/s0375-9601(63)91750-x
de Groot S. R., van Leeuwen W. A., van Weert Ch. G. Relativistic kinetic theory: principles and applications. Amsterdam: North-Holland; 1980. 433 p.
Trump M. A., Schieve W. C. Classical relativistic many-body dynamics. Dordrecht: Springer; 1999. 375 p. https://doi.org/10.1007/978-94-015-9303-8
Cercignani C., Kremer G. M. The relativistic Boltzmann equation: theory and applications. Basel: Birkhдuser; 2002. 394 p. https://doi.org/10.1007/978-3-0348-8165-4
Hakim R. Introduction to relativistic statisticalmechanics: classical and quantum. New Jersey: World Scientific; 2011. 566 p. https://doi.org/10.1142/7881
Kuz’menkov L. S. Field form of dynamics and statistics of systems of particles with electromagnetic interaction. Theoretical and Mathematical Physics. 1991;86(2): 159–168. https://doi.org/10.1007/bf01016167
Liboff R. Kinetic theory: classical quantum and relativistic descriptions. New York: Springer; 2003. 587 p.
Balescu R., Kotera T. On the covariant formulation of classical relativistic statistical mechanics. Physica. 1967;33(3): 558–580. https://doi.org/10.1016/0031-8914(67)90204-2
Schieve W. C. Covariant relativistic statistical mechanics of many particles. Foundations of Physics. 2005;35(8): 1359–1381. ttps://doi.org/10.1007/s10701-005-6441-9
Lusanna L. From relativistic mechanics towards relativistic statistical mechanics. Entropy. 2017;19(9): 436. https://doi.org/10.3390/e19090436
Currie D. G. Interaction contra classical relativistic Hamiltonian particle mechanics. Journal of Mathematical Physics. 1963;4(12): 1470-1488. https://doi.org/10.1063/1.1703928
Currie D. G., Jordan T. F., Sudarshan E. C. G. Relativistic invariance and Hamiltonian theories of interacting particles. Reviews of Modern Physics. 1963;35(2): 350-375. https://doi.org/10.1103/revmodphys.35.350
Leutwyler H. A no-interaction theorem in classical relativistic Hamiltonian particle mechanics. Nuovo Cimento. 1965;37(2): 556–567. https://doi.org/10.1007/bf02749856
Dirac P. A. M. Forms of relativistic dynamics. Reviews of Modern Physics. 1949,21(3): 392–399. https://doi.org/10.1103/revmodphys.21.392
van Dam H., Wigner E. P. Classical relativistic mechanics of interacting point particles. Physical Review. 1965;138(6B): 1576–1582. https://doi.org/10.1103/physrev.138.b1576
van Dam H., Wigner E. P. Instantaneous and asymptotic conservation laws for classical relativistic mechanics of interacting point particles. Physical Review. 1966;142(4): 838–843. https://doi.org/10.1103/physrev.142.838
Zakharov A. Y., Zubkov V. V. Field-theoretical representation of interactions between particles: classical relativistic probability-free kinetic theory. Universe. 2022;8(281): 1–11. http://dx.doi.org/10.3390/universe8050281
Debye P., Hückel E. Zur Theorie der Elektrolyte. Physikalische Zeitschrift. 1923;24(9): 185–206.
Ali A., Kramer G. JETS and QCD: a historical review of the discovery of the quark and gluon jets and its impact on QCD. The European Physical Journal H. 2011;36: 245–326. https://doi.org/10.1140/epjh/e2011-10047-1
Sazdjian H. The interplay between compact and molecular structures in tetraquarks. Symmetry. 2022; 14, 515. https://doi.org/10.3390/sym14030515
Loktionov I. K. Application of two-parameter oscillating interaction potentials for specifying the thermophysical properties of simple liquids. High Temperature. 2012;50(6): 708–716. https://doi.org/10.1134/S0018151X12050094
Loktionov I. K. Studying equilibrium thermophysical properties of simple liquids based on a four-parameter oscillating interaction potential. High Temperature. 2014;52(3): 390–402. https://doi.org/10.1134/S0018151X14020151
Lorenz L. On the identity of the vibrations of light with electrical currents. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1867;34(230): 287–301. https://doi.org/10.1080/14786446708639882
Riemann B. A contribution to electrodynamics. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1867;34(231): 368–372. https://doi.org/10.1080/14786446708639897
Ivanenko D. D.; Sokolov A. A. The classical theory of fields*. Moscow: GITTL Publ., 1949. 480 p. (In Russ.)
Landau L. D., Lifshitz E.M. The classical theory of fields*. Oxford.: Pergamon Press; 1975. 402 p.
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.