Релятивистская модель межатомных взаимодействий в конденсированных системах
Аннотация
Предложен метод описания динамики систем взаимодействующих атомов в терминах вспомогательного поля, которое в состоянии покоя эквивалентно заданным межатомным потенциалам, а в динамическом режиме представляет собой классическое релятивистское поле. Установлено, что для центральных межатомных потенциалов, допускающих преобразование Фурье, вспомогательное поле представляет собой суперпозицию элементарных полей, удовлетворяющих уравнению типа Клейна-Гордона-Фока с комплексными параметрами массы
Скачивания
Литература
Uhlenbeck G. E., Ford G. W. Lectures in statistical mechanics. American Mathematical Society (1963). Providence: AMS; 1963. 171 p.
Ritz W., Einstein A. Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift. 1909; 10(9): 323–324.
Kac M. Some remarks on the use of probability in classical statistical mechanics. Bull. de l’Académie Royale de Belgique (Classe des Sciences). 1956;42(5): 356–361. https://doi.org/10.3406/barb.1956.68352
Synge J. L. The electromagnetic two-body problem. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1940;177(968): 118–139. http://dx.doi.org/10.1098/rspa.1940.0114
Driver R. D. A two-body problem of classical electrodynamics: the one-dimensional case. Annals of Physics. 1963;21(1): 122–142. http://dx.doi.org/10.1016/0003-4916(63)90227-6
Hsing D. K. Existence and uniqueness theorem for the one-dimensional backwards twobody problem of electrodynamics. Physical Review D. 1977;16(4): 974–982. https://doi.org/10.1103/physrevd.16.974
Hoag J. T.; Driver R. D. A delayed-advanced model for the electrodynamics two-body problem. Nonlinear analysis: Theory, Methods & Applications. 1990;15(2): 165–184. https://doi.org/10.1016/0362-546x(90)90120-6
Zakharov A. Yu. On physical principles and mathematical mechanisms of the phenomenon of irreversibility. Physica A: Statistical Mechanics and its Applications. 2019;525: 1289–1295. https://doi.org/10.1016/j.physa.2019.04.047
Zakharov A. Y., Zakharov M. A. Microscopic dynamic mechanism of irreversible thermodynamic equilibration of crystals. Quantum Reports. 2021;3(4): 724–730. https://doi.org/10.3390/quantum3040045
Khrennikov A. Yu. Interpretations of probability. Berlin – New York: Walter de Gruyter; 2009. 237 p. https://doi.org/10.1515/9783110213195
Borel E. Introduction géométrique à quelques théories physiques. Paris: Gauthier-Villars; 1914. 147 p.
Levy P. Specific problems of functional analysis*. Moscow: Nauka Publ., 1967. 511 p. (In Russ.)
Rowlinson J. S. C. A scientific history of intermolecular forces. Cambridge: Cambridge University Press; 2002. 343 p.
Kaplan I. G. Intermolecular interactions: physical picture, computational methods and model potentials. Chichester: Wiley; 2006. 375 p. https://doi.org/10.1002/047086334x
Stone A. The theory of intermolecular forces. Oxford: Oxford University Press; 2013. 352 p. https://doi.org/10.1093/acprof:oso/9780199672394.001.0001
Molecular dynamics method in physical chemistry*. (Ed. Yu. K. Tovbin). Moscow: Nauka Publ., 1996; 169 p. (In Russ.)
Kamberaj H. Molecular dynamics simulations in statistical physics: theory and applications. Cham: Springer; 2020. 470 p. https://doi.org/10.1007/978-3-030-35702-3
Kun Zhou, Bo Liu. Molecular dynamics simulation: fundamentals and applications. Amsterdam: Elsevier; 2022. 374 p. https://doi.org/10.1016/b978-0-12-816419-8.00006-4
Planck M. Zur Dynamik bewegter Systeme. Annalen der Physik. 1908;331(6): 1–34. https://doi.org/10.1002/andp.19083310602
Jüttner F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Annalen der Physik. 1911;339(5): 856–882. https://doi.org/10.1002/andp.19113390503
Jüttner F. Die dynamik eines bewegten Gases in der Relativtheorie. Annalen der Physik. 1911;340(6): 145–161. https://doi.org/10.1002/andp.19113400608
Synge J. L. The relativistic gas. Amsterdam: North-Holland; 1957. 119 p.
Tolman R. C. Thermodynamics and relativity. Bulletin of the American Mathematical Society. 1933;39(2): 49–74. https://doi.org/10.1090/s0002-9904-1933-05559-3
ter Haar D., Wergeland H. Thermodynamics and statistical mechanics in the special theory of relativity. Physics Reports. 1971;1(2): 31–54. https://doi.org/10.1016/0370-1573(71)90006-8
Nakamura T. K. Three views of a secret in relativistic thermodynamics. Progress of Theoretical Physics. 2012;128(3): 463–475. https://doi.org/10.1143/ptp.128.463
Chernikov N. A. Derivation of the equations of relativistic hydrodynamics from the relativistic transport equation. Physics Letters. 1963;5(2): 115–117. https://doi.org/10.1016/s0375-9601(63)91750-x
de Groot S. R., van Leeuwen W. A., van Weert Ch. G. Relativistic kinetic theory: principles and applications. Amsterdam: North-Holland; 1980. 433 p.
Trump M. A., Schieve W. C. Classical relativistic many-body dynamics. Dordrecht: Springer; 1999. 375 p. https://doi.org/10.1007/978-94-015-9303-8
Cercignani C., Kremer G. M. The relativistic Boltzmann equation: theory and applications. Basel: Birkhдuser; 2002. 394 p. https://doi.org/10.1007/978-3-0348-8165-4
Hakim R. Introduction to relativistic statisticalmechanics: classical and quantum. New Jersey: World Scientific; 2011. 566 p. https://doi.org/10.1142/7881
Kuz’menkov L. S. Field form of dynamics and statistics of systems of particles with electromagnetic interaction. Theoretical and Mathematical Physics. 1991;86(2): 159–168. https://doi.org/10.1007/bf01016167
Liboff R. Kinetic theory: classical quantum and relativistic descriptions. New York: Springer; 2003. 587 p.
Balescu R., Kotera T. On the covariant formulation of classical relativistic statistical mechanics. Physica. 1967;33(3): 558–580. https://doi.org/10.1016/0031-8914(67)90204-2
Schieve W. C. Covariant relativistic statistical mechanics of many particles. Foundations of Physics. 2005;35(8): 1359–1381. ttps://doi.org/10.1007/s10701-005-6441-9
Lusanna L. From relativistic mechanics towards relativistic statistical mechanics. Entropy. 2017;19(9): 436. https://doi.org/10.3390/e19090436
Currie D. G. Interaction contra classical relativistic Hamiltonian particle mechanics. Journal of Mathematical Physics. 1963;4(12): 1470-1488. https://doi.org/10.1063/1.1703928
Currie D. G., Jordan T. F., Sudarshan E. C. G. Relativistic invariance and Hamiltonian theories of interacting particles. Reviews of Modern Physics. 1963;35(2): 350-375. https://doi.org/10.1103/revmodphys.35.350
Leutwyler H. A no-interaction theorem in classical relativistic Hamiltonian particle mechanics. Nuovo Cimento. 1965;37(2): 556–567. https://doi.org/10.1007/bf02749856
Dirac P. A. M. Forms of relativistic dynamics. Reviews of Modern Physics. 1949,21(3): 392–399. https://doi.org/10.1103/revmodphys.21.392
van Dam H., Wigner E. P. Classical relativistic mechanics of interacting point particles. Physical Review. 1965;138(6B): 1576–1582. https://doi.org/10.1103/physrev.138.b1576
van Dam H., Wigner E. P. Instantaneous and asymptotic conservation laws for classical relativistic mechanics of interacting point particles. Physical Review. 1966;142(4): 838–843. https://doi.org/10.1103/physrev.142.838
Zakharov A. Y., Zubkov V. V. Field-theoretical representation of interactions between particles: classical relativistic probability-free kinetic theory. Universe. 2022;8(281): 1–11. http://dx.doi.org/10.3390/universe8050281
Debye P., Hückel E. Zur Theorie der Elektrolyte. Physikalische Zeitschrift. 1923;24(9): 185–206.
Ali A., Kramer G. JETS and QCD: a historical review of the discovery of the quark and gluon jets and its impact on QCD. The European Physical Journal H. 2011;36: 245–326. https://doi.org/10.1140/epjh/e2011-10047-1
Sazdjian H. The interplay between compact and molecular structures in tetraquarks. Symmetry. 2022; 14, 515. https://doi.org/10.3390/sym14030515
Loktionov I. K. Application of two-parameter oscillating interaction potentials for specifying the thermophysical properties of simple liquids. High Temperature. 2012;50(6): 708–716. https://doi.org/10.1134/S0018151X12050094
Loktionov I. K. Studying equilibrium thermophysical properties of simple liquids based on a four-parameter oscillating interaction potential. High Temperature. 2014;52(3): 390–402. https://doi.org/10.1134/S0018151X14020151
Lorenz L. On the identity of the vibrations of light with electrical currents. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1867;34(230): 287–301. https://doi.org/10.1080/14786446708639882
Riemann B. A contribution to electrodynamics. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1867;34(231): 368–372. https://doi.org/10.1080/14786446708639897
Ivanenko D. D.; Sokolov A. A. The classical theory of fields*. Moscow: GITTL Publ., 1949. 480 p. (In Russ.)
Landau L. D., Lifshitz E.M. The classical theory of fields*. Oxford.: Pergamon Press; 1975. 402 p.
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.