Structural, optical, and photocatalytic properties of dispersions of CuS doped with Mn2+ and Ni2+

  • Larisa N. Maskaeva Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg 620002, Russian Federation; Ural Institute of State Fire Service of EMERCOM of Russia 22 Mira str., Ekaterinburg 620022, Russian Federation https://orcid.org/0000-0002-1065-832X
  • Maria A. Lysanova Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg 620002, Russian Federation https://orcid.org/0009-0004-5702-8706
  • Olga A. Lipina Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., Ekaterinburg 620041, Russian Federation https://orcid.org/0000-0003-3685-5337
  • Vladimir I. Voronin M. N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences 18 S. Kovalevskaya str., Ekaterinburg 620108, Russian Federation https://orcid.org/0000-0002-3901-9812
  • Evgeny A. Kravtsov M. N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences 18 S. Kovalevskaya str., Ekaterinburg 620108, Russian Federation https://orcid.org/0000-0002-5663-5692
  • Andrei V. Pozdin Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg 620002, Russian Federation https://orcid.org/0000-0002-6465-2476
  • Vyacheslav F. Markov Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg 620002, Russian Federation; Ural Institute of State Fire Service of EMERCOM of Russia 22 Mira str., Ekaterinburg 620022, Russian Federation https://orcid.org/0000-0003-0758-2958
Keywords: Chemical bath deposition, Copper sulfide, Thin films, Powders, Doping, Manganese, Nickel, Methylene blue, Photocatalytic degradation

Abstract

By calculating the ionic equilibria in the system CuCl2 (Mn2+, Ni2+) − NaCH3COO – N2H4CS, we determined the concentration regions of the formation of copper sulfide (CuS), both undoped and doped with transition metals (Mn, Ni). Using chemical deposition on frosted glass substrates, we obtained powders and thin films of CuS(Mn) and CuS(Ni) doped with manganese or nickel with a thickness of 170–200 nm. The X-ray diffraction demonstrated that CuS based dispersions have the hexagonal covelline structure (space group Р63mmc). The band gap Eg of CuS films (2.08 eV) grows to 2.37 and 2.49 eV after doping with nickel and manganese, respectively. The study demonstrated that CuS(Ni) powders have optimal photocatalytic properties in the visible spectral region. The degree of photodegradation of a methylene blue organic dye increases in
alkaline environments

Downloads

Download data is not yet available.

Author Biographies

Larisa N. Maskaeva, Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg 620002, Russian Federation; Ural Institute of State Fire Service of EMERCOM of Russia 22 Mira str., Ekaterinburg 620022, Russian Federation

Dr. Sci. (Chem.), Professor at the Department of Physical and Colloidal Chemistry, Ural Federal University named after the first President of Russia B. N. Yeltsin; Professor at the Department of Chemistry and Gorenje Processes, Ural Institute of State Fire Service of EMERCOM of Russia (Ekaterinburg, Russian Federation)

Maria A. Lysanova, Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg 620002, Russian Federation

Engineer at the Department of Physical and Colloidal Chemistry, Ural Federal University named after the first President of Russia B. N. Yeltsin (Ekaterinburg, Russian Federation)

Olga A. Lipina, Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., Ekaterinburg 620041, Russian Federation

Senior Research, Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (Ekaterinburg, Russian Federation)

Vladimir I. Voronin, M. N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences 18 S. Kovalevskaya str., Ekaterinburg 620108, Russian Federation

Senior Researcher, M. N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences (Ekaterinburg, Russian Federation)

Evgeny A. Kravtsov, M. N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences 18 S. Kovalevskaya str., Ekaterinburg 620108, Russian Federation

Head of Laboratory for Neutron-Synchrotron Research of Nanostructures, M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences (Ekaterinburg, Russian Federation)

Andrei V. Pozdin, Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg 620002, Russian Federation

Assistant at the Department of Physical and Colloidal Chemistry, Ural Federal University named after the first President of Russia B. N. Yeltsin (Ekaterinburg, Russian Federation)

Vyacheslav F. Markov, Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg 620002, Russian Federation; Ural Institute of State Fire Service of EMERCOM of Russia 22 Mira str., Ekaterinburg 620022, Russian Federation

Dr. Sci. (Chem.), Head of the Department of Physical and Colloidal Chemistry, Ural Federal University Named After the First President of Russia B. N. Yeltsin; Chief Researcher at the Department of Chemistry and Gorenje Processes, Ural Institute of State Fire Service of EMERCOM of Russia (Ekaterinburg, Russian Federation)

References

Lin Q. D., Zhao L. H., Xing B. Synthesis and characterization of cubic mesoporous bridged for removing organic pollutants from water. Chemosphere. 2014;103: 188–196. https://doi.org/10.1016/j.chemosphere.2013.11.062

Lysanova M. A., Maskaeva L. N., Markov V. F. Application of metal oxides and sulfides as photocatalysts. Butlerov Сommunications. 2023;73(1):1–19. (In Russ., abstract in Eng.). https://doi.org/10.37952/ROI-jbc-01/23-73-1-1

Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358): 37–38. https://doi.org/10.1038/238037a0

Shu Q. W., Lan J, Gao M. X., Wang J, Huang C. Z. Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm. 2015;17(6): 1374–1380. https://doi.org/10.1039/c4ce02120g

Sreelekha N., Subramanyam K., Amaranatha R. D. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles. Applied Surface Science. 2016;378: 330–340. https://doi.org/10.1016/j.apsusc.2016.04.003

Chen J., Liu W., Gao W. Tuning photocatalytic activity of In2S3 broadband spectrum photocatalyst based on morphology. Applied Surface Science. 2016;368: 288–297. https://doi.org/10.1016/j.apsusc.2016.02.008

Tanveer M., Cao C., Aslam I., … Mahmood A. Facile synthesis of CuS nanostructures: structural, optical and photocatalytic properties. Science of Advanced Materials. 2014;6(12): 2694–2701. https://doi.org/10.1166/sam.2014.1988

Bagul S. V., Chavhan S. D., Sharma R. Growth and characterization of CuxS (x = 1.0, 1.76, and 2.0) thin films grown by solution growth technique (SGT). Journal of Physics and Chemistry of Solids. 2007;68(9): 1623–1629. https://doi.org/10.1016/j.jpcs.2007.03.053

Tanveer M., Cao C., Aslam I., … Mahmood A. Synthesis of CuS flowers exhibiting versatile photocatalyst response. New Journal of Chemistry. 2015;39(2): 1459–1468. https://doi.org/10.1039/c4nj01834f

Chaki S. H., Deshpande M. P., Tailor J. P. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films. 2014;550: 291–297. https://doi.org/10.1016/j.tsf.2013.11.037

Meng X., Tian G., Chen Y., … Fu H. Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties CrystEngComm. 2013;15(25): 5144. https://doi.org/10.1039/C3CE40195B

Shu Q. W., Lan J., Gao M. X., Wang J., Huang C. Z. Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm. 2015;17(6): 1374–1380. https://doi.org/10.1039/C4CE02120G

Dutta A., Dolui S. K. Preparation of colloidal dispersion of CuS nanoparticles stabilized by SDS. Materials Chemistry and Physics. 2008;112(2): 448–452. https://doi.org/10.1016/j.matchemphys.2008.05.072

Feng C., Zhang L., Wang Z. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries. Journal of Power Sources. 2014;269: 550–555. https://doi.org/10.1016/j.jpowsour.2014.07.006

Kalyanikutty K. P., Nikhila M., Maitra U., Rao C. N. R. Hydrogel-assisted synthesis of nanotubesand nanorods of CdS, ZnS and CuS, showing some evidence for oriented attachment. Chemical Physics Letters. 2006;432(1-3): 190–194. https://doi.org/10.1016/j.cplett.2006.10.032

Tan C., Lu R., Xue P., Bao C., Zhao Y. Synthesis of CuS nanoribbons templated by hydrogel. Materials Chemistry and Physics. 2008;112(2): 500–503. https://doi.org/10.1016/j.matchemphys.2008.06.015

Liu Y., Qin D., Wang L., Cao Y. A facile solution route to CuS hexagonal nanoplatelets. Materials Chemistry and Physics. 2007;102(2-3): 201–206. https://doi.org/10.1016/j.matchemphys.2006.12.004

Savariraj A. D., Viswanathan K. K., Prabakar K. CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells. Electrochimica Acta. 2014;149: 364–369. https://doi.org/10.1016/j.electacta.2014.10.141

Yang Y. J., Zi J., Li W. Enzyme-free sensing of hydrogen peroxide and glucose at a CuS nanoflowers modified glassy carbon electrode. Electrochimica Acta. 2014;115: 126–130. https://doi.org/10.1016/j.electacta.2013.10.168

Li F., Wu J., Qin Q., Li Z., Huang X. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technology. 2010;198(2): 267–274. https://doi.org/10.1016/j.powtec.2009.11.018

Kovaleva D. S., Gorokhovsky A. V., Tretyachenko E. V., Kosarev A. V. The effect of the hydrogen index on the photodegradation of methylene blue under the action of sunlight with the participation of modified potassium polytitanates. Fundamental Research. 2015;7(2): 1401–1406. (In Russ.). Available at: https://fundamental-research.ru/ru/article/view?id=37162

Carp O., Huisman C. L., Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry. 2004;32(1-2): 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

Sreelekha N., Subramanyam K., Amaranatha Reddy D. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles. Applied Surface Science. 2016;378: 330–340. https://doi.org/10.1016/j.apsusc.2016.04.003

Sreelekha N., Subramanyam K., Amaranatha Reddy D., … Vijayalakshmi R. P. Efficient photocatalytic degradation of rhodamine-B by Fe doped CuS diluted magnetic semiconductor nanoparticles under the simulated sunlight irradiation. Solid State Sciences. 2016; 62: 71–81. https://doi.org/10.1016/j.solidstatesciences.2016.11.001

Subramanyam K., Sreelekha N., Amaranatha Reddy D., Murali G., Rahul Varma K., Vijayalakshmi R. P. Chemical synthesis, structural, optical, magnetic characteristics and enhanced visible light active photocatalysis of Ni doped CuS nanoparticles. Solid State Sciences. 2017;65: 68–78. https://doi.org/10.1016/j.solidstatesciences.2017.01.008

Lewis A. E. Review of metal sulphide precipitation. Hydrometallurgy. 2010;104(2): 222–234. https://doi.org/10.1016/j.hydromet.2010.06.010

Shu Q. W., Lan J., Gao M. X., Wang J., Huang C. Z. Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm. 2015;17(6): 1374–1380. https://doi.org/10.1039/c4ce02120g

Raghavendra K. V. G., Rao K. M., Kumar N. T. U. Hydrothermal synthesis of CuS/CoS nano composite as an efficient electrode for the supercapattery applications. Journal of Energy Storage. 2021;40: 102749. https://doi.org/10.1016/j.est.2021.102749

Wang W., Ao L. Synthesis and characterization of crystalline CuS nanorods prepared via a room temperature one-step, solid-state route. Materials Chemistry and Physics. 2008;109(1): 77–81. https://doi.org/10.1016/j.matchemphys.2007.10.035

Zhao Y., Pan H., Lou Y., Qiu X., Zhu J., Burda C. Plasmonic Cu2−xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides. Journal American Chemical Society. 2009;131(12): 4253–4261. https://doi.org/10.1021/ja805655b

Markov V. F., Maskaeva L. N., Ivanov P. N. Hydrochemical deposition of metal sulfide films: modeling and experiment*. Ekaterinburg: UrO RAS Publ.; 2006. 217 p. (In Russ.)

Lurie Yu. Yu. Handbook of analytical chemistry*. Moscow: Khimiya Publ. 1971. 456 p. (In Russ.)

Rietveld H. M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. 1969;2(2): 65e71. https://doi.org/10.1107/S0021889869006558

Rodriges-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter. 1993;192: 55. https://doi.org/10.1016/0921-4526(93)90108-I

Odo J., Matsumoto K., Shinmoto E., Hatae Y., Shiozaki A. Spectrofluorometric determination of hydrogen peroxide based on oxidative catalytic reactions of p-hydroxyphenyl derivatives with metal complexes of thiacalix[4]arenetetrasulfonate on a modified anion-exchanger. Analytical Sciences. 2004;20(4): 707–710. https://doi.org/10.2116/analsci.20.707

Pal M., Mathews N. R., Sanchez-Mora E., Pal U., Paraguay-Delgado F., Mathew X. Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity. Journal of Nanoparticle Research. 2015;17(7): 1–12. https://doi.org/10.1007/s11051-015-3103-5

Okamura H., Naitoh J., Nanba N., Matoba M., Nishioka M., Anzai S. Optical study of the metalnonmetal transition in NiS. Solid State Communications. 1998;112(2): 91–95. https://doi.org/10.1016/s0038-1098(99)00277-x

Subramanyam K., Sreelekha N., Reddy D. A., … Vijayalakshmi R. P. Influence of Mn doping on structural, photoluminescence and magnetic characteristics of covellite-phase CuS nanoparticles. Journal of uperconductivity and Novel Magnetism. 2017;31(4): 1161–1165. https://doi.org/10.1007/s10948-017-4296-x

Subramanyam K., Sreelekha N., Amaranatha Reddy D., Murali G., Rahul Varma K., Vijayalakshmi R. P. Chemical synthesis, structural, optical, magnetic characteristics and enhanced visible light active photocatalysis of Ni doped CuS nanoparticles. Solid State Sciences. 2017;65: 68–78. https://doi.org/10.1016/j.solidstatesciences.2017.01.008

Sharma L. K., Kar M., Choubey R. K., Mukherjee S. Low field magnetic interactions in the transition metals doped CuS quantum dots. Chemical Physics Letters. 2021;780: 138902. https://doi.org/10.1016/j.cplett.2021.138902

Hosseini-Hajivar M. M, Jamali-Sheini F., Yousefi R. Microwave-assisted solvothermal synthes isand physical roperties of Zn-doped MnS nanoparticles. Solid State Sciences. 2019;93: 31–36. https://doi.org/10.1016/j.solidstatesciences.2018.10.010

Gümüş C., Ulutaş C., Esen R., Özkendir O. M., Ufuktepe Y. Preparation and characterization of crystalline MnS thin films by chemical bath deposition. Thin Solid Films. 2005;492(1–2): 1–5. https://doi.org/10.1016/j.tsf.2005.06.016

Zhang P., Wu L. J., Pan W. G., Bai S. C., Guo R. T. Efficient photocatalytic H2 evolution over NiS-PCN Z-scheme composites via dual charge transfer pathways. Applied Catalysis B: Environmental. 2021;289: 120040. https://doi.org/10.1016/j.apcatb.2021.120040

Tang Z. K., Liu W. W., Zhang D. Y., Lau W. M., Liu L. M. Tunable band gap and magnetism of the wodimensional nickel hydroxide. RSC Advances. 2015;5(94): 77154–77158. https://doi.org/10.1039/c5ra10380k

Ukoba K. O., Eloka-Eboka A. C., Inambao F. L. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renewable and Sustainable Energy Reviews. 2018;82: 2900–2915. https://doi.org/10.1016/j.rser.2017.10.041

Published
2024-03-20
How to Cite
Maskaeva, L. N., Lysanova, M. A., Lipina, O. A., Voronin, V. I., Kravtsov, E. A., Pozdin, A. V., & Markov, V. F. (2024). Structural, optical, and photocatalytic properties of dispersions of CuS doped with Mn2+ and Ni2+. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(2), 265-279. https://doi.org/10.17308/kcmf.2024.26/11939
Section
Original articles