Структурные, оптические и фотокаталитические свойства дисперсий CuS, легированных Mn2+ и Ni2+
Аннотация
Расчетом ионных равновесий в системе «CuCl2 (Mn2+, Ni2+) − NaCH3COO – N2H4CS» определены концентрационные области образования сульфида меди CuS как нелегированного, так и легированного переходными металлами (Mn, Ni). Химическим осаждением на подложках из матированного стекла получены легированные марганцем либо никелем порошки и тонкопленочные слои CuS(Mn) и CuS(Ni) толщиной 170–200 нм. Рентгеновской дифракцией установлено образование дисперсий на основе CuS по типу гексагональной структуры ковелина (пр. гр. Р63mmc). Ширина запрещенной зоны Eg пленки CuS (2.08 эВ) увеличивается до 2.37 и 2.49 эВ при легировании никелем и марганцем. Показано, что оптимальными фотокаталитическими свойствами в видимой области спектра обладают
порошки CuS(Ni). Установлено увеличение степени фоторазложения органического красителя метиленовый синий в щелочной среде.
Скачивания
Литература
Lin Q. D., Zhao L. H., Xing B. Synthesis and characterization of cubic mesoporous bridged for removing organic pollutants from water. Chemosphere. 2014;103: 188–196. https://doi.org/10.1016/j.chemosphere.2013.11.062
Lysanova M. A., Maskaeva L. N., Markov V. F. Application of metal oxides and sulfides as photocatalysts. Butlerov Сommunications. 2023;73(1):1–19. (In Russ., abstract in Eng.). https://doi.org/10.37952/ROI-jbc-01/23-73-1-1
Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358): 37–38. https://doi.org/10.1038/238037a0
Shu Q. W., Lan J, Gao M. X., Wang J, Huang C. Z. Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm. 2015;17(6): 1374–1380. https://doi.org/10.1039/c4ce02120g
Sreelekha N., Subramanyam K., Amaranatha R. D. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles. Applied Surface Science. 2016;378: 330–340. https://doi.org/10.1016/j.apsusc.2016.04.003
Chen J., Liu W., Gao W. Tuning photocatalytic activity of In2S3 broadband spectrum photocatalyst based on morphology. Applied Surface Science. 2016;368: 288–297. https://doi.org/10.1016/j.apsusc.2016.02.008
Tanveer M., Cao C., Aslam I., … Mahmood A. Facile synthesis of CuS nanostructures: structural, optical and photocatalytic properties. Science of Advanced Materials. 2014;6(12): 2694–2701. https://doi.org/10.1166/sam.2014.1988
Bagul S. V., Chavhan S. D., Sharma R. Growth and characterization of CuxS (x = 1.0, 1.76, and 2.0) thin films grown by solution growth technique (SGT). Journal of Physics and Chemistry of Solids. 2007;68(9): 1623–1629. https://doi.org/10.1016/j.jpcs.2007.03.053
Tanveer M., Cao C., Aslam I., … Mahmood A. Synthesis of CuS flowers exhibiting versatile photocatalyst response. New Journal of Chemistry. 2015;39(2): 1459–1468. https://doi.org/10.1039/c4nj01834f
Chaki S. H., Deshpande M. P., Tailor J. P. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films. 2014;550: 291–297. https://doi.org/10.1016/j.tsf.2013.11.037
Meng X., Tian G., Chen Y., … Fu H. Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties CrystEngComm. 2013;15(25): 5144. https://doi.org/10.1039/C3CE40195B
Shu Q. W., Lan J., Gao M. X., Wang J., Huang C. Z. Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm. 2015;17(6): 1374–1380. https://doi.org/10.1039/C4CE02120G
Dutta A., Dolui S. K. Preparation of colloidal dispersion of CuS nanoparticles stabilized by SDS. Materials Chemistry and Physics. 2008;112(2): 448–452. https://doi.org/10.1016/j.matchemphys.2008.05.072
Feng C., Zhang L., Wang Z. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries. Journal of Power Sources. 2014;269: 550–555. https://doi.org/10.1016/j.jpowsour.2014.07.006
Kalyanikutty K. P., Nikhila M., Maitra U., Rao C. N. R. Hydrogel-assisted synthesis of nanotubesand nanorods of CdS, ZnS and CuS, showing some evidence for oriented attachment. Chemical Physics Letters. 2006;432(1-3): 190–194. https://doi.org/10.1016/j.cplett.2006.10.032
Tan C., Lu R., Xue P., Bao C., Zhao Y. Synthesis of CuS nanoribbons templated by hydrogel. Materials Chemistry and Physics. 2008;112(2): 500–503. https://doi.org/10.1016/j.matchemphys.2008.06.015
Liu Y., Qin D., Wang L., Cao Y. A facile solution route to CuS hexagonal nanoplatelets. Materials Chemistry and Physics. 2007;102(2-3): 201–206. https://doi.org/10.1016/j.matchemphys.2006.12.004
Savariraj A. D., Viswanathan K. K., Prabakar K. CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells. Electrochimica Acta. 2014;149: 364–369. https://doi.org/10.1016/j.electacta.2014.10.141
Yang Y. J., Zi J., Li W. Enzyme-free sensing of hydrogen peroxide and glucose at a CuS nanoflowers modified glassy carbon electrode. Electrochimica Acta. 2014;115: 126–130. https://doi.org/10.1016/j.electacta.2013.10.168
Li F., Wu J., Qin Q., Li Z., Huang X. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technology. 2010;198(2): 267–274. https://doi.org/10.1016/j.powtec.2009.11.018
Kovaleva D. S., Gorokhovsky A. V., Tretyachenko E. V., Kosarev A. V. The effect of the hydrogen index on the photodegradation of methylene blue under the action of sunlight with the participation of modified potassium polytitanates. Fundamental Research. 2015;7(2): 1401–1406. (In Russ.). Available at: https://fundamental-research.ru/ru/article/view?id=37162
Carp O., Huisman C. L., Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry. 2004;32(1-2): 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
Sreelekha N., Subramanyam K., Amaranatha Reddy D. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles. Applied Surface Science. 2016;378: 330–340. https://doi.org/10.1016/j.apsusc.2016.04.003
Sreelekha N., Subramanyam K., Amaranatha Reddy D., … Vijayalakshmi R. P. Efficient photocatalytic degradation of rhodamine-B by Fe doped CuS diluted magnetic semiconductor nanoparticles under the simulated sunlight irradiation. Solid State Sciences. 2016; 62: 71–81. https://doi.org/10.1016/j.solidstatesciences.2016.11.001
Subramanyam K., Sreelekha N., Amaranatha Reddy D., Murali G., Rahul Varma K., Vijayalakshmi R. P. Chemical synthesis, structural, optical, magnetic characteristics and enhanced visible light active photocatalysis of Ni doped CuS nanoparticles. Solid State Sciences. 2017;65: 68–78. https://doi.org/10.1016/j.solidstatesciences.2017.01.008
Lewis A. E. Review of metal sulphide precipitation. Hydrometallurgy. 2010;104(2): 222–234. https://doi.org/10.1016/j.hydromet.2010.06.010
Shu Q. W., Lan J., Gao M. X., Wang J., Huang C. Z. Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm. 2015;17(6): 1374–1380. https://doi.org/10.1039/c4ce02120g
Raghavendra K. V. G., Rao K. M., Kumar N. T. U. Hydrothermal synthesis of CuS/CoS nano composite as an efficient electrode for the supercapattery applications. Journal of Energy Storage. 2021;40: 102749. https://doi.org/10.1016/j.est.2021.102749
Wang W., Ao L. Synthesis and characterization of crystalline CuS nanorods prepared via a room temperature one-step, solid-state route. Materials Chemistry and Physics. 2008;109(1): 77–81. https://doi.org/10.1016/j.matchemphys.2007.10.035
Zhao Y., Pan H., Lou Y., Qiu X., Zhu J., Burda C. Plasmonic Cu2−xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides. Journal American Chemical Society. 2009;131(12): 4253–4261. https://doi.org/10.1021/ja805655b
Markov V. F., Maskaeva L. N., Ivanov P. N. Hydrochemical deposition of metal sulfide films: modeling and experiment*. Ekaterinburg: UrO RAS Publ.; 2006. 217 p. (In Russ.)
Lurie Yu. Yu. Handbook of analytical chemistry*. Moscow: Khimiya Publ. 1971. 456 p. (In Russ.)
Rietveld H. M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. 1969;2(2): 65e71. https://doi.org/10.1107/S0021889869006558
Rodriges-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter. 1993;192: 55. https://doi.org/10.1016/0921-4526(93)90108-I
Odo J., Matsumoto K., Shinmoto E., Hatae Y., Shiozaki A. Spectrofluorometric determination of hydrogen peroxide based on oxidative catalytic reactions of p-hydroxyphenyl derivatives with metal complexes of thiacalix[4]arenetetrasulfonate on a modified anion-exchanger. Analytical Sciences. 2004;20(4): 707–710. https://doi.org/10.2116/analsci.20.707
Pal M., Mathews N. R., Sanchez-Mora E., Pal U., Paraguay-Delgado F., Mathew X. Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity. Journal of Nanoparticle Research. 2015;17(7): 1–12. https://doi.org/10.1007/s11051-015-3103-5
Okamura H., Naitoh J., Nanba N., Matoba M., Nishioka M., Anzai S. Optical study of the metalnonmetal transition in NiS. Solid State Communications. 1998;112(2): 91–95. https://doi.org/10.1016/s0038-1098(99)00277-x
Subramanyam K., Sreelekha N., Reddy D. A., … Vijayalakshmi R. P. Influence of Mn doping on structural, photoluminescence and magnetic characteristics of covellite-phase CuS nanoparticles. Journal of uperconductivity and Novel Magnetism. 2017;31(4): 1161–1165. https://doi.org/10.1007/s10948-017-4296-x
Subramanyam K., Sreelekha N., Amaranatha Reddy D., Murali G., Rahul Varma K., Vijayalakshmi R. P. Chemical synthesis, structural, optical, magnetic characteristics and enhanced visible light active photocatalysis of Ni doped CuS nanoparticles. Solid State Sciences. 2017;65: 68–78. https://doi.org/10.1016/j.solidstatesciences.2017.01.008
Sharma L. K., Kar M., Choubey R. K., Mukherjee S. Low field magnetic interactions in the transition metals doped CuS quantum dots. Chemical Physics Letters. 2021;780: 138902. https://doi.org/10.1016/j.cplett.2021.138902
Hosseini-Hajivar M. M, Jamali-Sheini F., Yousefi R. Microwave-assisted solvothermal synthes isand physical roperties of Zn-doped MnS nanoparticles. Solid State Sciences. 2019;93: 31–36. https://doi.org/10.1016/j.solidstatesciences.2018.10.010
Gümüş C., Ulutaş C., Esen R., Özkendir O. M., Ufuktepe Y. Preparation and characterization of crystalline MnS thin films by chemical bath deposition. Thin Solid Films. 2005;492(1–2): 1–5. https://doi.org/10.1016/j.tsf.2005.06.016
Zhang P., Wu L. J., Pan W. G., Bai S. C., Guo R. T. Efficient photocatalytic H2 evolution over NiS-PCN Z-scheme composites via dual charge transfer pathways. Applied Catalysis B: Environmental. 2021;289: 120040. https://doi.org/10.1016/j.apcatb.2021.120040
Tang Z. K., Liu W. W., Zhang D. Y., Lau W. M., Liu L. M. Tunable band gap and magnetism of the wodimensional nickel hydroxide. RSC Advances. 2015;5(94): 77154–77158. https://doi.org/10.1039/c5ra10380k
Ukoba K. O., Eloka-Eboka A. C., Inambao F. L. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renewable and Sustainable Energy Reviews. 2018;82: 2900–2915. https://doi.org/10.1016/j.rser.2017.10.041
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.