Formation of smooth and microporous ZnO-based substrate material
Abstract
The paper investigates the influence of the deposition temperature on the morphology and structural-phase composition of the ZnO-based substrate material with a thickness of over 50 μm during the magnetron sputtering of hot ceramic targets.
The study revealed the influence of the deposition temperature on the growth rate, morphology, and structural parameters of the ZnO single crystal precipitate. It was shown that the ZnO deposition rates during the spluttering of hot ceramic targets were ultra-high (up to 1.5 μm/min). The authors propose a method for the formation of both smooth and microporous ZnO-based substrate materials without using template technologies.
The results obtained in the work can be widely used in optoelectronics and nitride technologies
Downloads
References
Nakamura S., Senoh M., Mukai T. P-GaN/N-InGaN/N-GaN double-heterostructure bluelight-emitting diodes. Japanese Journal of Applied Physics. 1993;32(2,1A/B): 8–11. https://doi.org/10.1143/JJAP.32.L8
Nakamura S., Mukai T., Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters. 1994; 64(13): 1687–1689. https://doi.org/10.1063/1.111832
Kong X., Qiu Z., Wu L., Lei Y., Chi L. Luminescence properties of green phosphor Ca2Ga2(Ge1-xSix) O7:y%Eu2+ and application. Materials. 2023;16(10): 3671. https://doi.org/10.3390/ma16103671
Wang Q., Xie M., Fang M., … Min X. Synthesis and luminescence properties of a novel green-yellow-emitting phosphor BiOCl:Pr3+ for blue-light-dased w-LEDs. Molecules. 2019;24(7): 1296. https://doi.org/10.3390/molecules24071296
Xu H., Hou X., Chen L., Mei Y., Zhang B. Optical properties of InGaN/GaN QW with the same well-plus-barrier thickness. Crystals. 2022;12(1): 114. https://doi.org/10.3390/cryst12010114
Gu X., Reshchikov M. A., Teke A., … Nause J. GaN epitaxy on thermally treated c-plane bulk ZnO substrates with and Zn faces. Applied Physics Letters. 2004; 84 (13): 2268–2270. https://doi.org/10.1063/1.1690469
Sidelev D. V., Bleykher G. A., Krivobokov V. P., Koishybayeva Z. High-rate magnetron sputtering with hot target. Surface and Coatings Technology. 2016;308: 168–173. https://doi.org/10.1016/j.surfcoat.2016.06.096
Komlev A. A., Minzhulina E. A., Smirnov V. V., Shapovalov V. I. Influence of argon pressure and current density on substrate temperature during magnetron sputtering of hot titanium target. Applied Physics A. 2017;124(1): 48. https://doi.org/10.1007/s00339-017-1458-4
Graillot-Vuilecot R., Anne-Lise T., Lecas T., Cachoncinlle C., Millon E., Caillard A. Hot target magnetron sputtering process: effect of infrared radiation on the deposition of titanium and titanium oxide thin films. Vacuum. 2020;181: 109734. https://doi.org/10.1016/j.vacuum.2020.109734
Ismailov A. M., Nikitenko V. A., Rabadanov M. R., Emiraslanova L. L., Aliev I. S., Rabadanov M. K. Sputtering of a hot ceramic target: experiments with ZnO. Vacuum. 2019;168: 108854. https://doi.org/10.1016/j.vacuum.2019.108854
Tammann G. Die temperatur des beginnsinnerer diffusion in kristallen. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 1926;157(1): 321–325. https://doi.org/10.1002/zaac.19261570123
Kiselev V. F., Kozlov S. N., Zoteev A. V. Osnovy fiziki poverkhnosti tverdogo tela (Fundamentals of Solid Surface Physics). Moscow: MSU Publ., 1999. 294 р. (In Russ.)
Abrahams S. C., Bernstein J. L. Remeasurement of the structure of hexagonal ZnO. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry.1969;25(7): 1233–1236. https://doi.org/10.1107/S0567740869003876
Peng C.-Y., Tian J.-S., Wang W.-L., Ho Y.-T., Chang L. Morphology evolution of a-plane ZnO films on r-plane sapphire with growth by pulsed laser deposition. Applied Surface Science. 2013;265: 553. https://doi.org/10.1016/j.apsusc.2012.11.044
Yang W., Wang F., Guan Z., … Fu Y. Comparative study of ZnO thin films grown on quartz glass and sapphire (001) substrates by means of magnetron sputtering and high-temperature annealing. Applied Sciences. 2019;9: 4509. https://doi.org/10.3390/app9214509
Taabouche A., Bouabellou A., Kermiche F., … Amara S. Advances in Materials Physics and Chemistry. 2013;3: 209. https://doi.org/10.4236/ampc.2013.34031
Kozhevnikov I. V., Buzmakov A. V., Siewert F., … Sinn H. Journal of Synchrotron Radiation. 2016;23(1): 78–90. https://doi.org/10.1107/s160057751502202x
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.