Polycondensation in a spray of aqueous-alcoholic solution of lactic acid
Abstract
The removal of low molecular weight products of the reaction and heat withdrawal is one of the problems of bulk polycondensation. Polycondensation under spray conditions is an effective way to solve these problems.
Based on the example of the reversible reaction of lactic acid polycondensation, it was shown that size effects can significantly affect the conversion rate, the degree of polymerization, and the rate of processes. Chemical thermodynamics suggests that chemical equilibrium in a spray shifts towards the formation of polylactide. In addition, the recondensation of volatile components (water, lactic acid, solvent) stabilizes the concentration of reagents and the temperature in the spray drops throughout the entire process. Model experiments confirming the obtained regularities are presented. Microscopic observation of sessile drops of aqueous and aqueous-alcoholic lactic acid solutions demonstrated the formation of polylactide under normal conditions (without heating, catalyst, evacuation).
Downloads
References
Hergeth W., Jaeckle C., Krell M. Industrial process monitoring of polymerization and spray drying processes. Polymer Reaction Engineering. 2003;11(4): 663–714. https://doi.org/10.1081/PRE-120026369
Sinha-Ray S. Spray in polymer processing. Droplet and spray transport: Paradigms and fpplications. 2018: 31–54. https://doi.org/10.1007/978-981-10-7233-8_3
Wanning S., Süverkrüp R., Lamprecht A. Pharmaceutical spray freeze drying. International Journal of Pharmaceutics. 2015;488(1–2): 136–153. https://doi.org/10.1016/j.ijpharm.2015.04.053
Zhang Y., Suslick K. S. Synthesis of poly(3,4- ethylenedioxythiophene) microspheres by ultrasonic spray polymerization (USPo). Chemistry of Materials. American Chemical Society (ACS). 2015;27(22): 7559–7563. https://doi.org/10.1021/acs.chemmater.5b03423
Akgün E., Muntean A., Hubbuch J., Wörner M., Sangermano M. Cationic Aerosol photopolymerization. Macromolecular Materials and Engineearing. 2015;300(2): 136–139. https://doi.org/10.1002/mame.201400211
Poostforooshan J., Rennecke S., Gensch M., Beuermann S., Brunotte G. P., Ziegmann G., Weber A. P. Aerosol process for the in situ coating of nanoparticles with a polymer shell. Aerosol Science and Technology. 2014;48(10): 1111–1122. https://doi.org/10.1080/02786826.2014.964354
Sigmund S., Akgün E., Meyer J., Hubbuch J., Wörner M., Kasper G. Defined polymer shells on nanoparticles via a continuous aerosol-based process. Journal of Nanoparticle Research. 2014;16(8): 2533–2536. https://doi.org/10.1007/s11051-014-2533-9
Fei B., Lu H., Qi K., Shi H., Liu T., Li X., Xin J. H. Multi-functional microcapsules produced by aerosol reaction. Journal of Aerosol Science. 2008;39(12): 1089–1098. https://doi.org/10.1016/j.jaerosci.2008.07.007
Berdonosov S. S., Baronov C. B., Kuz’micheva Ju. V., Berdonosova D. G., Melihov I. V. Solid dispersed phases of multilayer and tubular inorganic microparticles. Rossijskij himicheskij zhurnal. 2001;45(1): 35–42 (In Russ). Available at: http://www.chem.msu.ru/rus/jvho/2001-1/35.pdf
Chicheva P. A., Kurbangaleev V. R., Levchenko K. S., Shmelin P. S., Grebennikov E. P. Preparation of polystyrene microspheres filled with rhodamine G. ossijskij himicheskij zhurnal. 2020;64(4): 46–50 (In Russ., abstract in Eng.). https://doi.org/10.6060/rcj.2020644.5
Shishulin A. V., Fedoseev V. B. Thermal stability and phase composition of stratifying polymer solutions in small-volume droplets. Journal of Engineering Physics and Thermophysics. 2020;93(4): 802–809. https://doi.org/10.1007/s10891-020-02182-9
Fedoseev V. B. The size effect for liquid–liquid phase equilibrium in a ternary system. Technical Physics Letters. 2021;47(2): 135–138. https://doi.org/10.1134/S1063785021020036
Fedoseev V. B., Fedoseeva E. N. States of a supersaturated solution in limited-size systems. JETP Letters. 2013;97(7): 408–412. https://doi.org/10.1134/S0021364013070059
Fedoseev V. B., Fedoseeva E. N. Size effects during phase transformations in stratifying systems. Russian Journal of Physical Chemistry A. 2014;88(3):436–441. https://doi.org/10.1134/S0036024414020083
Fedoseeva E. N., Fedoseev V. B. Possibilities and peculiarities of spray technologies in organic synthesis. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2020;22(3): 397–405.
https://doi.org/10.17308/kcmf.2020.22/3001
Poharukova Y. E., Novikov V. T., Glotova V. N. Polycondensation of lactic acid to oligomers in the solution. Bulletin of the Kuzbass State Technical University. 2017;(1): 134–139. (In Russ., abstract in Eng.). https://www.elibrary.ru/item.asp?id=28897134
Glotova V. N. Improvement of lactide synthesis and purification technology. Cand. tech. sci. diss. Thesis. Tomsk: TPU, 2016. 129 p. (In Russ). Available at: https://elar.urfu.ru/bitstream/10995/40461/1/urfu1572_d.pdf
Pavlyukevich N. V., Fisenko S. P., Khodyko Yu. A. Coalescence and diffusion growth of nanoparticles in closed microvolume of supersaturated solution. Colloid Journal. 2010;72(6): 825–829. https://doi.org/10.1134/S1061933X10060141
Fedoseev V. B., Fedoseeva E. N. Formation of bi- and polymodal distributions and the non-ostwald behavior of disperse systems. Journal of Engineering Physics and Thermophysics. 2019;92(5): 1191–1200. https://doi.org/10.1007/s10891-019-02033-2
Fedoseev V. B., Fedoseeva E. N. Formation of monodisperse and narrow disperse ensembles of droplets of aqueous organic solutions in the vapor of volatile components. Journal of Engineering Physics and Thermophysics. 2020;93(5): 1116–1122. https://doi.org/10.1007/s10891-020-02212-6
Shishulin, A. V., Fedoseev V. B. Features of the influence of the initial composition of organic stratifying mixtures in microsized pores on the mutual solubility of components. Technical Physics Letters. 2020;46(9): 938–941. http://dx.doi.org/10.1134/S1063785020090291
Shishulin A. V., Fedoseev V. B. On some peculiarities of stratification of liquid solutions within pores of fractal shape. Journal of Molecular Liquids. 2019;278: 363–367. https://doi.org/10.1016/j.molliq.2019.01.050.
Emel’yanenko V. N., Verevkin S. P., Schick C., Stepurko E. N., Roganov G. N., Georgieva M. K. The thermodynamic properties of s-lactic acid. Russian Journal of Physical Chemistry A. 2010;84(9): 1491–1497. https://doi.org/10.1134/S0036024410090074
Kuni F. M., Shchekin A. K., Grinin A. P. Theory of heterogeneous nucleation for vapor undergoing a gradual metastable state formation. Physics-Uspekhi. 2001;44(4): 331–370. http://dx.doi.org/10.1070/PU2001v044n04ABEH000783
Laiadi D., Hasseine A., Merzougui A. Homotopy method to predict liquid-liquid equilibria for ternary mixtures of (water+carboxylic acid+organic solvent). Fluid Phase Equilibria. 2012;313(January): 114–120. https://doi.org/10.1016/j.fluid.2011.09.034
Toikka M., Samarov A., Toikka A. Solubility, liquid–liquid equilibrium and critical states for the system acetic acid+n-propanol+n-propyl acetate+water at 293.15K and 303.15K. Fluid Phase Equilibria. 2014;375: 66–72. https://doi.org/10.1016/j.fluid.2014.04.034
Toikka M., Samarov A., Trofimova M., Golikova A., Tsvetov N., Toikka A. Solubility, liquid–liquid equilibrium and critical states for the quaternary system acetic acid–ethanol–ethyl acetate–water at 303.15K and 313.15K. Fluid Phase Equilibria. 2014;373: 72–79. https://doi.org/10.1016/j.fluid.2014.04.013
Ghanadzadeh Gilani H., Golpour M., Abbasi Souraki B. Ternary equilibrium data of mixtures consisting of 2-butanol, water, and heavy alcohols at T = 298.2 K. The Journal of Chemical Thermodynamics. 2012;49: 39–45. https://doi.org/10.1016/j.jct.2012.01.003
Domingues L., Cussolin P. A., da Silva J. L., de Oliveira L. H., Aznar M. Liquid-liquid equilibrium data for ternary systems of water+lactic acid+C4-C7 alcohols at 298.2K and atmospheric pressure. Fluid Phase Equilibria. 2013;354: 12–18. https://doi.org/10.1016/j.fluid.2013.06.007
Faraji S., Mokhtarpour M., Behboudi E., Sadrmousavi A., Shekaari H., Zafarani-Moattar M. T. Vapor-liquid equilibria and computational study for aqueous solutions of novel deep eutectic solvents (amino acid/lactic acid) at 298. Journal of Chemical and Engineering Data. 2020;65(7): 3262–3269. https://doi.org/10.1021/acs.jced.9b01169
Izhenbina T. N. The solubility of the lactic acid oligomer. Eurasian Union of Scientists. 2014;7: 71–72. (In Russ). Availble at: https://www.elibrary.ru/item.asp?id=27642469
Littringer E. M., Paus R., Mescher A., Schroettner H., Walzel P., Urbanetz N. A. The morphology of spray dried mannitol particles — The vital importance of droplet size. Powder Technology. 2013;239: 162–174. https://doi.org/10.1016/j.powtec.2013.01.065
Burlakov V., Goriely A. Thermodynamic limit for particle monodispersity: How narrow can a particle size distribution be? EPL (Europhysics Letters). 2017;119(5): 50001–6. https://doi.org/10.1209/0295-5075/119/50001
Wu C., Ying A., Ren S. Fabrication of polymeric micelles with core-shell-corona structure for applications in controlled drug release. Colloid and Polymer Science. 2013;291(4): 827–834. DOI: https://doi.org/10.1007/s00396-012-2794-8
Toikka A. M., Samarov A. A., Toikka M. A. Phase and chemical equilibria in multicomponent fluid systems with a chemical reaction. Russian Chemical Reviews. 2015;84(4): 378–392. http://dx.doi.org/10.1070/RCR4515
Copyright (c) 2022 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.