Analysis of the variations in the surface properties of SiO2 and Al2O3 nanoparticles obtained by different synthesis methods

Keywords: Nanoparticles, Surface sites, Interfacial layer, Zeta potential, Nanoparticle synthesis

Abstract

      The article presents a comparative study of the surface properties of silica and alumina nanoparticles synthesized by various methods.
        Using the IR spectroscopy we demonstrated that the synthesis method affect the surface properties of nanoparticles while maintaining the phase composition of the material. The article demonstrates the relationship between the types of surface sites, their strength, and the interaction of nanoparticles with the dispersed medium. In particular, a significant difference was observed in the strength of the active sites for all samples, which was reflected in the rheology of nanofluids based on epoxy resin. This demonstrates the importance of accurate descriptions of the surface properties of nanoparticles, as they
determine their interaction with other materials.
       The article also considers the possibility to evaluate the intensity of the particle-medium interaction based on the fractal dimension. Our study showed that it varies significantly depending on the synthesis method. The article discussed the possibility to determine the intensity of the particle-medium interaction using the values of the nanoparticle’s zeta potential and the interfacial layer.

Downloads

Download data is not yet available.

Author Biography

Vyacheslav V. Syzrantsev, Grozny State Oil Technical University, 100 Isaeva av., Grozny 364051, Russian Federation

Cand. Sci. (Phys.–Math.),
Director of the Research Centre for Collective Use of
Scientific Equipment “Nanotechnologies and
Nanomaterials”, Grozny State Oil Technical University
(Grozny, Russian Federation).

References

Sheka E. F., Khavryuchenko V. D., Markichev I. V. Techonological polymorphism of disperse amorphous silicas: inelastic neutron scattering and computer modelling. Russian Chemical Reviews. 1995;64(5): 389–414. https://doi.org/10.1070/rc1995v-064n05abeh000156

Vollath D., Fischer F. D., Holec D. Surface energy of nanoparticles – influence of particle size and structure. Beilstein Journal of Nanotechnology. 2018;9: 2265–2276. https://doi.org/10.3762/bjnano.9.211

Cluskey P. D., Newport R. J., Benfield R. E., Gurman S. J., Schmidt G. Z. An EXAFS study of some gold and palladium cluster compounds. Zeitschrift for Physik D Atoms, Molecules and Clusters. 1993;26: 8–11. https://doi.org/10.1007/bf01425601

Eckert J., Holzer J. C., Ahn C. C., Fu Z., Johnson W. L. Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. Nanostructured Materials. 1993;2: 407–413. https://doi.org/10.1016/0965-9773(93)90183-c

Coombes C. J. The melting of small particles of lead and indium. Journal of Physics F: Metal Physics. 1972;2: 441–449. https://doi.org/10.1088/0305-4608/2/3/013

Shandiz A., Safaei M. A. Melting entropy and enthalpy of metallic nanoparticles. Materials Letters. 2008;62: 3954–3956. https://doi.org/10.1016/j.matlet.2008.05.018

Safaei A., Shandiz M. A. Size-dependent thermal stability and the smallest nanocrystal. Physica E: Low-dimensional Systems and Nanostructures. 2009;41: 359–364. https://doi.org/10.1016/j.physe.2008.07.023

Ouyang G., Tan X., Yang G. Thermodynamic model of the surface energy of nanocrystals. Physical Review B. 2006;74: 195408. https://doi.org/10.1103/physrevb.74.195408

Abzaev Y. A., Syzrantsev V. V., Bardakhanov S. P. Simulation of the structural state of amorphous phases in nanoscale SiO2 synthesized via different methods. Physics of the Solid State. 2017;59(9): 1874–1878. https://doi.org/10.1134/S1063783417090025

Syzrantsev V., Paukshtis E., Larina T., Chesalov Y., Bardakhanov S., Nomoev A. Features of surface structures of alumina and titanium dioxide nanoparticles produced using different synthesis methods. Journal of Nanomaterials. 2018;2018: 1-10. https://doi.org/10.1155/2018/2065687

Fried E., Gurtin M. E. A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy. In: Advances in Applied Mechanics. Aref H., van der Giessen E. (eds.). Academic Press: San Diego, CA, U.S.A.; 2004. pp. 1–177. https://doi.org/10.1016/s0065-2156(04)40001-5

Chukin G. D., Smirnov B. V., Malevich V. I. Formation of the structure of an amorphous aluminosilicate catalyst and its Lewis acid sites. Kinetics and Catalysis. 1988;29(3): 609-615.

Yumozhapova N. V., Nomoev A. V., Syzrantsev V. V., Khartaeva E. C. Formation of metal/semiconductor Cu-Si composite nanostructures. Beilstein Journal of Nanotechnology. 2019;10: 2497–2504. https://doi.org/10.3762/bjnano.10.240

Grammatikopoulos P., Steinhauer S., Vernieres J., Singh V., Sowwan M. Nanoparticle design by gas-phase synthesis. Advances in Physics: X. 2016;2: 1–20. https://doi.org/10.1080/23746149.2016.1142829

Swiatkowska-Warkocka Z., Koga K., Kawaguchi K., Wang H., Pyatenko A., Koshizaki N., Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy ubmicrometer spheres RSC Adv. 2013;3: 79–83. https://doi.org/10.1039/c2ra22119e

Li C., Yamauchi Y. Facile solution synthesis of Ag@Pt core-shell nanoparticles with dendritic Pt shells. Physical Chemistry Chemical Physics. 2013;15: 3490–3496. https://doi.org/10.1039/c3cp44313b

Kaabipour S., Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology. 2021;12: 102–136. https://doi.org/10.3762/bjnano.12.9

Kato M. Preparation of ultrafine particles of refractory oxides by gas-evaporation method. Japanese Journal of Applied Physics. 1976;15(5): 757–760. https://doi.org/10.1143/JJAP.15.757

Minakov A., Rudyak V. Ya, Pryazhnikov M. I. Systematic experimental study of the viscosity of nanofluids. Heat Transfer Engineering. 2021;42(12): 1024–1040. https://doi.org/10.1080/01457632.2020.1766250

Bashirnezhad K., Bazri S., Safaei M., Goodarzi M., Dahari M., Mahian O., Dalkılıça A., Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. International Communications in Heat and Mass Transfer. 2016;73(4): 114–123. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.005

Batchelor G. K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics. 1977;83(1): 97-117. https://doi.org/10.1017/S0022112077001062

Syzrantsev V. V., Zavyalov A. P., Bardakhanov S. P. The role of associated liquid layer at nanoparticles and its influence on nanofluids viscosity. International Journal of Heat and Mass Transfer. 2014;72: 501. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.082

Khavryuchenko V. D., Sheka E. F. Computational modeling of amorphous silica. 4. Modeling the initial structures. Aerogel. Journal of Structural Chemistry. 1994;35(3): 305–308. https://doi.org/10.1007/BF02578281

Lamberov V. F., Romanova A. A., Shmelev R. G., Sopin I. G., Characterization of acid-modified alumina as a support for reforming catalysts. Kinetics and Catalysis. 2020;61(1): 130–136. https://doi.org/10.1134/s0023158420010097

Morterra G., Bolis C., Magnacca V. IR spectroscopic and microcalorimetric characterization of Lewis acid sites on (transition phase) Al2O3 using adsorbed CO. Langmuir. 1994;10(6): 1812–1824. https://doi.org/10.1021/la00018a033

Nechiporenko A. P. Donor-acceptor properties of the surface of solid-phase systems. Indicator method. St. Petersburg: Lan’ Publ.; 2017. 284 p.

Sychev M. M., Cheremisina O. A. Relationship between the acid-base properties of the filler surface and the dielectric constant of polymer composite materials based on it. ChemChemTech. 2014;57(12): 67–71. (In Russ.). Available at: https://elibrary.ru/item.asp?id=23206884

Syrkov A. G., Silivanov M. O., Sychev M. M., Rozhkova N. N. Alteration of the acid-base properties of the oxidized surface of disperse aluminum during the adsorption of ammonium compounds and the antifriction effect. Glass Physics and Chemistry. 2018;44(5): 474–479. https://doi.org/10.1134/s1087659618050206

Syzrantsev V. V., Arymbaeva A. T., Zavjalov A. P., Zobov K. V. The nanofluids’ viscosity prediction through particle-media interaction layer. Materials Physics and Mechanics. 2022; 48(3): 386-396. http://dx.doi.org/10.18149/MPM.4832022_9

Nomoev A. V., Vikulina L. S. Fractal dimension of the grain boundaries in ceramics with nanodispersed additions. Technical Physics. 2012;57(12): 1746–1748. https://doi.org/10.1134/s1063784212120225

Syzrantsev V. V., Larina T. V., Abzaev Yu. A., Paukstis E. A., Kostyukov A. I. Structural, surface and optical properties of nanoalumina produced by various ways. IOP Conference Series: Materials Science and

Engineering/ 2020;1000(1): 012001. https://doi.org/10.1088/1757-899x/1000/1/012001

Syzrantsev V. V., Paukstis E. A., Larina T. V. Surface polymorphism of silica nanoparticles. IOP Conference Series: Materials Science and Engineering. 2020;1008(1): 012030. https://doi.org/10.1088/1757-899x/1008/1/012030

Bardakhanov S. P., Vasiljeva I. V., Mjakin S. V., Kuksanov N. K. Surface functionality features of nanosized silica obtained by electron beam evaporation at ambient pressure. Advances in Materials Science and Engineering. 2010;2010: 241695. https://doi.org/10.1155/2010/241695

Mewis J., Wagner N. J. Colloidal suspension rheology. Cambridge University Press; 2011. https://doi.org/10.1017/CBO9780511977978

Published
2022-08-26
How to Cite
Syzrantsev, V. V. (2022). Analysis of the variations in the surface properties of SiO2 and Al2O3 nanoparticles obtained by different synthesis methods. Condensed Matter and Interphases, 24(3), 369-378. https://doi.org/10.17308/kcmf.2022.24/9860
Section
Original articles