Анализ вариации свойств поверхности наночастиц SiO2 и Al2O3, полученных разными методами
Аннотация
Проведено сравнительное исследование поверхностных свойств наночастиц кремнезема и оксида алюминия, синтезированных различными методами.
С помощью инфракрасной спектроскопии показано, что разные методы синтеза влияют на изменение поверхностных свойств наночастиц при сохранении фазового состава материала. Показана связь между типами поверхностных центров, их силой и взаимодействием наночастиц с дисперсионной средой. В частности, наблюдалась значительная разница в силе активных центров для всех образцов, которая отразилась на реологии наножидкостей на основе эпоксидной смолы. Это указывает на важность точного описания свойств поверхности наночастиц, поскольку они
определяют их взаимодействие с другими материалами.
Рассмотрены возможности оценки интенсивности взаимодействия частица-среда через величину фрактальной размерности. Выявлено существенное изменение в ее величине при вариации метода синтеза наночастиц. Обсуждено практическое проявление интенсивности взаимодействия частица-среда через величины дзета-потенциала и межфазного слоя создаваемых наночастицей.
Скачивания
Литература
Sheka E. F., Khavryuchenko V. D., Markichev I. V. Techonological polymorphism of disperse amorphous silicas: inelastic neutron scattering and computer modelling. Russian Chemical Reviews. 1995;64(5): 389–414. https://doi.org/10.1070/rc1995v-064n05abeh000156
Vollath D., Fischer F. D., Holec D. Surface energy of nanoparticles – influence of particle size and structure. Beilstein Journal of Nanotechnology. 2018;9: 2265–2276. https://doi.org/10.3762/bjnano.9.211
Cluskey P. D., Newport R. J., Benfield R. E., Gurman S. J., Schmidt G. Z. An EXAFS study of some gold and palladium cluster compounds. Zeitschrift for Physik D Atoms, Molecules and Clusters. 1993;26: 8–11. https://doi.org/10.1007/bf01425601
Eckert J., Holzer J. C., Ahn C. C., Fu Z., Johnson W. L. Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. Nanostructured Materials. 1993;2: 407–413. https://doi.org/10.1016/0965-9773(93)90183-c
Coombes C. J. The melting of small particles of lead and indium. Journal of Physics F: Metal Physics. 1972;2: 441–449. https://doi.org/10.1088/0305-4608/2/3/013
Shandiz A., Safaei M. A. Melting entropy and enthalpy of metallic nanoparticles. Materials Letters. 2008;62: 3954–3956. https://doi.org/10.1016/j.matlet.2008.05.018
Safaei A., Shandiz M. A. Size-dependent thermal stability and the smallest nanocrystal. Physica E: Low-dimensional Systems and Nanostructures. 2009;41: 359–364. https://doi.org/10.1016/j.physe.2008.07.023
Ouyang G., Tan X., Yang G. Thermodynamic model of the surface energy of nanocrystals. Physical Review B. 2006;74: 195408. https://doi.org/10.1103/physrevb.74.195408
Abzaev Y. A., Syzrantsev V. V., Bardakhanov S. P. Simulation of the structural state of amorphous phases in nanoscale SiO2 synthesized via different methods. Physics of the Solid State. 2017;59(9): 1874–1878. https://doi.org/10.1134/S1063783417090025
Syzrantsev V., Paukshtis E., Larina T., Chesalov Y., Bardakhanov S., Nomoev A. Features of surface structures of alumina and titanium dioxide nanoparticles produced using different synthesis methods. Journal of Nanomaterials. 2018;2018: 1-10. https://doi.org/10.1155/2018/2065687
Fried E., Gurtin M. E. A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy. In: Advances in Applied Mechanics. Aref H., van der Giessen E. (eds.). Academic Press: San Diego, CA, U.S.A.; 2004. pp. 1–177. https://doi.org/10.1016/s0065-2156(04)40001-5
Chukin G. D., Smirnov B. V., Malevich V. I. Formation of the structure of an amorphous aluminosilicate catalyst and its Lewis acid sites. Kinetics and Catalysis. 1988;29(3): 609-615.
Yumozhapova N. V., Nomoev A. V., Syzrantsev V. V., Khartaeva E. C. Formation of metal/semiconductor Cu-Si composite nanostructures. Beilstein Journal of Nanotechnology. 2019;10: 2497–2504. https://doi.org/10.3762/bjnano.10.240
Grammatikopoulos P., Steinhauer S., Vernieres J., Singh V., Sowwan M. Nanoparticle design by gas-phase synthesis. Advances in Physics: X. 2016;2: 1–20. https://doi.org/10.1080/23746149.2016.1142829
Swiatkowska-Warkocka Z., Koga K., Kawaguchi K., Wang H., Pyatenko A., Koshizaki N., Pulsed laser irradiation of colloidal nanoparticles: a new synthesis route for the production of non-equilibrium bimetallic alloy ubmicrometer spheres RSC Adv. 2013;3: 79–83. https://doi.org/10.1039/c2ra22119e
Li C., Yamauchi Y. Facile solution synthesis of Ag@Pt core-shell nanoparticles with dendritic Pt shells. Physical Chemistry Chemical Physics. 2013;15: 3490–3496. https://doi.org/10.1039/c3cp44313b
Kaabipour S., Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology. 2021;12: 102–136. https://doi.org/10.3762/bjnano.12.9
Kato M. Preparation of ultrafine particles of refractory oxides by gas-evaporation method. Japanese Journal of Applied Physics. 1976;15(5): 757–760. https://doi.org/10.1143/JJAP.15.757
Minakov A., Rudyak V. Ya, Pryazhnikov M. I. Systematic experimental study of the viscosity of nanofluids. Heat Transfer Engineering. 2021;42(12): 1024–1040. https://doi.org/10.1080/01457632.2020.1766250
Bashirnezhad K., Bazri S., Safaei M., Goodarzi M., Dahari M., Mahian O., Dalkılıça A., Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. International Communications in Heat and Mass Transfer. 2016;73(4): 114–123. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.005
Batchelor G. K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics. 1977;83(1): 97-117. https://doi.org/10.1017/S0022112077001062
Syzrantsev V. V., Zavyalov A. P., Bardakhanov S. P. The role of associated liquid layer at nanoparticles and its influence on nanofluids viscosity. International Journal of Heat and Mass Transfer. 2014;72: 501. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.082
Khavryuchenko V. D., Sheka E. F. Computational modeling of amorphous silica. 4. Modeling the initial structures. Aerogel. Journal of Structural Chemistry. 1994;35(3): 305–308. https://doi.org/10.1007/BF02578281
Lamberov V. F., Romanova A. A., Shmelev R. G., Sopin I. G., Characterization of acid-modified alumina as a support for reforming catalysts. Kinetics and Catalysis. 2020;61(1): 130–136. https://doi.org/10.1134/s0023158420010097
Morterra G., Bolis C., Magnacca V. IR spectroscopic and microcalorimetric characterization of Lewis acid sites on (transition phase) Al2O3 using adsorbed CO. Langmuir. 1994;10(6): 1812–1824. https://doi.org/10.1021/la00018a033
Nechiporenko A. P. Donor-acceptor properties of the surface of solid-phase systems. Indicator method. St. Petersburg: Lan’ Publ.; 2017. 284 p.
Sychev M. M., Cheremisina O. A. Relationship between the acid-base properties of the filler surface and the dielectric constant of polymer composite materials based on it. ChemChemTech. 2014;57(12): 67–71. (In Russ.). Available at: https://elibrary.ru/item.asp?id=23206884
Syrkov A. G., Silivanov M. O., Sychev M. M., Rozhkova N. N. Alteration of the acid-base properties of the oxidized surface of disperse aluminum during the adsorption of ammonium compounds and the antifriction effect. Glass Physics and Chemistry. 2018;44(5): 474–479. https://doi.org/10.1134/s1087659618050206
Syzrantsev V. V., Arymbaeva A. T., Zavjalov A. P., Zobov K. V. The nanofluids’ viscosity prediction through particle-media interaction layer. Materials Physics and Mechanics. 2022; 48(3): 386-396. http://dx.doi.org/10.18149/MPM.4832022_9
Nomoev A. V., Vikulina L. S. Fractal dimension of the grain boundaries in ceramics with nanodispersed additions. Technical Physics. 2012;57(12): 1746–1748. https://doi.org/10.1134/s1063784212120225
Syzrantsev V. V., Larina T. V., Abzaev Yu. A., Paukstis E. A., Kostyukov A. I. Structural, surface and optical properties of nanoalumina produced by various ways. IOP Conference Series: Materials Science and
Engineering/ 2020;1000(1): 012001. https://doi.org/10.1088/1757-899x/1000/1/012001
Syzrantsev V. V., Paukstis E. A., Larina T. V. Surface polymorphism of silica nanoparticles. IOP Conference Series: Materials Science and Engineering. 2020;1008(1): 012030. https://doi.org/10.1088/1757-899x/1008/1/012030
Bardakhanov S. P., Vasiljeva I. V., Mjakin S. V., Kuksanov N. K. Surface functionality features of nanosized silica obtained by electron beam evaporation at ambient pressure. Advances in Materials Science and Engineering. 2010;2010: 241695. https://doi.org/10.1155/2010/241695
Mewis J., Wagner N. J. Colloidal suspension rheology. Cambridge University Press; 2011. https://doi.org/10.1017/CBO9780511977978
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.