Фотосенсибилизация активных форм кислорода наночастицами диоксида титана, декорированными квантовыми точками сульфида серебра

  • Олег Владимирович Овчинников Воронежский государственный университет, Университетская пл. 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-6032-9295
  • Михаил Сергеевич Смирнов Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-8765-0986
  • Алексей Сергеевич Перепелица Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-1264-0107
  • Сергей Владимирович Асланов Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-3961-2480
  • Василий Николаевич Попов Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-1294-8686
  • Артем Петрович Гуреев Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-3562-5329
  • Федор Андреевич Цыбенко Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация
  • Алаа Мохаммед Хуссейн Хуссейн Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация
Ключевые слова: активные формы кислорода, фотокатализ, наночастицы, диоксид титана, квантовые точки, сульфид серебра, фотосенсибилизация

Аннотация

        В настоящее время большой интерес вызывает разработка способов сенсибилизации к видимой и ИК области спектра систем фотокаталитического продуцирования активных форм кислорода на основе наночастиц диоксида титана. Целью данной работы являлось установление закономерностей фотогенерации активных форм кислорода при формировании наногетеросистем наночастица TiO2 – квантовая точка Ag2S под действием излучения из видимой и ближней ИК областей спектра.
      В работе проведен анализ фотокаталитических свойств наночастиц анатаза размером 10–15 нм, декорированных коллоидными квантовыми точками Ag2S средним размером 2.5 нм,  ассивированными тиогликолевой и 2-меркаптопропионовой кислотами. При помощи селективных сенсорных красителей произведена оценка эффективности сенсибилизации различных активных форм кислорода изученными фотокатализаторами в условиях возбуждения в УФ и видимой области. Показано, что декорирование наночастиц TiO2 квантовыми точками приводит к увеличению эффективности продуцирования гидроксильного радикала, супероксид аниона и перекиси водорода
системой при фотовозбуждении излучением из области поглощения TiO2 (УФ диапазон). Обнаружена сенсибилизация продуцирования активных форм кислорода наносистемами при возбуждении излучением из видимой области спектра (вне полосы собственного поглощения TiO2). Обнаружено увеличение эффективности продуцирования активных форм кислорода (до 1.5 раз) при замене пассиватора квантовых точек Ag2S с тиогликолевой кислоты на 2-меркаптопропионовую. На основании полученных данных предложена схема фотопроцессов в системе.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Олег Владимирович Овчинников, Воронежский государственный университет, Университетская пл. 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., профессор, декан физического факультета, Воронежский государственный университет (Воронеж, Российская Федерация)

Михаил Сергеевич Смирнов, Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., доцент,
доцент кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж,
Российская Федерация)

Алексей Сергеевич Перепелица, Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

к. ф.-м. н., старший преподаватель кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Сергей Владимирович Асланов, Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

аспирант кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Василий Николаевич Попов, Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

д. б. н., профессор,
заведующий кафедрой генетики, цитологии и биоинженерии,
Воронежский государственный университет (Воронеж, Российская Федерация)

Артем Петрович Гуреев, Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

к. б. н., старший преподаватель кафедры генетики, цитологии и биоинженерии, Воронежский государственный университет (Воронеж, Российская Федерация)

Федор Андреевич Цыбенко, Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

студент кафедры
оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Алаа Мохаммед Хуссейн Хуссейн, Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Российская Федерация

аспирант кафедры оптики и спектроскопии, Воронежский
государственный университет (Воронеж, Российская Федерация)

Литература

Nanomaterials for solar cell applications. S. Thomas, E. H. M. Sakho, N. Kalarikkal, S. O. Oluwafemi, J. Wu (eds.). Amsterdam: Elsevier; 2019. https://doi.org/10.1016/C2016-0-03432-0

Yang D. Titanium dioxide – material for a sustainable environment. London: IntechOpen; 2018. 518 p. https://doi.org/10.5772/intechopen.70290

Roose B., Pathak S., Steiner U. Doping of TiO2 for sensitized solar cells. Chemical Society Reviews. 2015;44: 8326–8349. https://doi.org/10.1039/C5CS00352K

Hou X., Aitola K., Lund P. D. TiO2 nanotubes for dye-sensitized solar cells – A review. Energy Science & Engineering. 2021;9(7): 921–937. https://doi.org/10.1002/ese3.831

He F., Jeon W., Choi W. Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nature Communications. 2021;12: 2528. https://doi.org/10.1038/s41467-021-22839-0

Ochiai T., Hoshi T., Silmen H., Nakata K., Murakami T., Tatejima H., Koide Y., Houas A., Horie T., Morito Y., Fujishima A. Fabrication of a TiO2 nanoparticles impregnated titanium mesh filter and its application for environmental purification. Catalysis Science & Technology. 2011;1: 1324–1327. https://doi.org/10.1039/C1CY00185J

Stefanov B. Photocatalytic TiO2 thin films for air cleaning: Effect of facet orientation, chemical unctionalization,

and reaction conditions. Effect of facet orientation, chemical functionalization, and reaction conditions. Doctor’s thesis of philosoph. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. Uppsala: Acta Universitatis Upsaliensis; 1307. 2015. 148 pp.

Chiarello G. L., Dozzi M. V., Selli E. TiO2-based materials for photocatalytic hydrogen production. Journal of Energy Chemistry. 2017;26(2): 250–258. https://doi.org/10.1016/j.jechem.2017.02.005

Kumaravel V., Mathew S., Bartlett J., Pillai S. C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental. 2019;244(5): 1021–1064. https://doi.org/10.1016/j.apcatb.2018.11.080

Yu J., Qi L., Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. Journal of Phys-ical Chemistry C. 2010;114(30): 13118–13125. https://doi.org/10.1021/jp104488b

Binas V., Venieri D., Kotzias D., Kiriakidis G. Modified TiO2 based photocatalysts for improved air and health quality. Journal of Materiomics. 2017;3(1): 3–16. https://doi.org/10.1016/j.jmat.2016.11.002

Magalhães P., Andrade L., Nunes O. C., Mendes A. Titanium dioxide photocatalysis: fundamentals and application on photoinactivation. Reviews on Advanced Materials Science. 2017;51(2): 91–129. Available at: https://ipme.ru/e-journals/RAMS/no_25117/01_25117_magalhaes.pdf

Nakata K., Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2012;13(3): 169–189. https://doi.org/10.1016/j.jphotochemrev.

06.001

Kapilashrami M., Zhang Y., Liu Y.-S., Hagfeldt A., Guo J. Probing the optical property and electronic structure of

iO2 nanomaterials for renewable energy applications. Chemical Review. 2014;114: 9662–9707. https://doi.org/10.1021/cr5000893

Reddy K., Manorama S. V., Ramachandra Reddy A. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics. 2003;78(1): 239–245. https://doi.org/10.1016/S0254-0584(02)00343-7

Zhu T., Gao S.-P. The stability, electronic structure, and optical property of TiO2 Polymorphs. Journal of Physical Chemistry C. 2014;118(21): 11385–11396.https://doi.org/10.1021/jp412462m

Qin L., Wang G., Tan Y. Plasmonic Pt nanoparticles – TiO2 hierarchical nano-architecture as a visible light photocatalyst for water splitting. Scientific Reports. 2018;8: 16198. https://doi.org/10.1038/s41598-018-33795-z

Yoo S. M., RawalaJ S. B., Lee J. E., Kim J., Ryu H.‑Y., Park D.-W., Lee W. I. Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2. Applied Catalysis A: General. 2015;499: 47–54. https://doi.org/10.1016/j.apcata.2015.04.003

Khlyustova A., Sirotkin N., Kusova T. Doped TiO2: the effect of doping elements on photocatalytic activity. Materials Advances. 2020;1: 1193–1201. https://doi.org/10.1039/D0MA00171F

Ansari S. A., Khan M. M., Ansari M. O., Cho M. H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry. 2016;40: 3000–3009. https://doi.org/10.1039/C5NJ03478G

He J., Du Y., Bai Y., An J., Cai X., Chen Y., Wang P., Yang X., Feng Q. Facile formation of anatase/ rutile TiO2 nanocomposites with enhanced photocatalytic activity. Molecules. 2019;24: 2996. https://doi.org/10.3390/molecules24162996

Padayachee D., Mahomed A. S., Singh S., Friedrich H. B. Effect of the TiO2 anatase/rutile ratio and interface for the oxidative activation of n-octane. ACS Catalysis. 2020;10(3): 2211–2220. https://doi.org/10.1021/acscatal.9b04004

Wageh S., Al-Ghamdi A. A., Soylu M., Al-Turki Y., Al-Senany N., Yakuphanoglu F. CdS quantum dots and dye co-sensitized nanorods TiO2 solar. Journal of Nanoelectronics and Optoelectronics. 2014;9(5): 662–665. http://dx.doi.org/10.1166/jno.2014.1651

Zumeta-Dubé I., Ruiz-Ruiz V.-F., Díaz D., Rodil-Posadas S., Zeinert A. TiO2 sensitization with Bi2S3 quantum dots: The inconvenience of sodium ions in the deposition procedure. Journal of Physical Chemistry C. 2014;118(22): 11495–11504. https://doi.org/10.1021/jp411516a

Guo Y., Lei H, Li B., Chen Z., Wen J., Yang G., Fang G. Improved performance in Ag2S/P3HT hybrid solar cells with a solution processed SnO2 electron transport layer. RSC Advances. 2016;6: 77701–77708. https://doi.org/10.1039/C6RA19590C

Ovchinnikov O. V., Smirnov M. S. IR luminescence mechanism in colloidal Ag2S quantum dots. Journal of Luminescence. 2020;227: 117526. https://doi.org/10.1016/j.jlumin.2020.117526

Zhu L., Meng Z., Thisha G., Oh W.-C. Hydrothermal synthesis of porous Ag2S sensitized TiO2 catalysts and their photocatalytic activities in the visible light range. Chinese Journal of Catalysis. 2012;33(2–3): 254–260. https://doi.org/10.1016/S1872-2067(10)60296-3

Yadav S., Jeevanandam P. Synthesis of Ag2STiO 2 Nanocomposites and their catalytic activity towards rhodamine B photodegradation. Journal of Alloys and Compounds. 2015;649: 483–490. https://doi.org/10.1016/j.jallcom.2015.07.184

Ghafoor S., Ata S., Manmood N., Arshad S. B. Photosensitization of TiO2 nanofibers by Ag2S with the synergistic effect of excess surface Ti3+ states for enhanced photocatalytic activity under simulated sunlight. Scientific Reports. 2017;7: 255. https://doi.org/10.1038/s41598-017-00366-7

Li Z., Xiong S., Wang G., Xie Z., Zhang Z. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays. Scientific Reports. 2016;6: 19754. https://doi.org/10.1038/srep19754

Dong M., Li Q.-H., Li R., Cui Y.-Q., Wang X.-X., Yu J.-Q., Long Y.-Z. Efficient under visible catalysts from electrospun flexible Ag2S/TiO2 composite fiber membrane. Journal of Materials Science. 2021;56: 7966–7981. https://doi.org/10.1007/s10853-021-05796-3

Zhu L., Meng Z.-D., Oh W.-C. MWCNT-Based Ag2S-TiO2 nanocomposites photocatalyst: ultrasound- assisted synthesis, characterization, and en-hanced catalytic efficiency. Journal of Nanomaterials. 2012:586520. https://doi.org/10.1155/2012/586526

Yang M., Shi X. Biosynthesis of Ag2S/TiO2 nanotubes nanocomposites by Shewanella oneidensis MR-1 for the catalytic degradation of 4-nitrophenol. Environmental Science and Pollution Research. 2019;26(12): 12237–12246. https://doi.org/10.1007/s11356-019-04462-1

Tachan Z., Hod I., Shalom M., Grinis L., Zaban A. The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Physical Chemistry Chemical Physics. 2013;15(11): 3841. https://doi.org/10.1039/C3CP44719G

Ovchinnikov O. V., Aslanov S. V., Smirnov M. S., Grevtseva I. G., Perepelitsa A. S. Photostimulated control of luminescence quantum yield for colloidal Ag2S/2-MPA quantum dots. RSC Advances. 2019;9: 37312–37320. https://doi.org/10.1039/C9RA07047H

Ovchinnikov O. V., Grevtseva I. G., Smirnov M. S., Kondratenko T. S., Perepelitsa A. S., Aslanov S. V., Khokhlov V. U., Tatyanina E. P., Matsukovich A. S. Effect of thioglycolic acid molecules on luminescence properties of Ag2S quantum dots. Optical and Quantum Electronics. 2020;52: 198. https://doi.org/10.1007/s11082-020-02314-8

Kubelka P., Munk F. An article on optics of paint layers. Fuer Tekn. Physik. 1931;12: 593–609.

Murphy A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials & Solar Cells. 2007;91: 1326–1337. https://doi.org/10.1016/j.solmat.2007.05.005

Lakowitz R. Principles of Fluorescent Spectroscopy 3-ed. Springer; 2006. 954 pp.

Reindl S., Penzkofer A., Gong S.-H., Landthaler M., Szeimies R. M., Abels C., Bäumler W. Quantum yield of triplet formation for indocyanine green. Journal of Photochemistry and Photobiology A: Chemistry. 1997;105(1): 65–68. https://doi.org/10.1016/S1010-6030(96)04584-4

Bedouhene S., Moulti-Mati F., Hurtado-Nedelec M. , Dang P. M.-C., El-Benna J. Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils. American Journal of Blood Research. 2017;7(4): 41–48. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545213/

Mohanty J. G., Jaffe J. S., Schulman E. S., Raible D. G. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. Journal of Immunological Methods. 1997;202(2): 133–141. https://doi.org/10.1016/S0022-1759(96)00244-X

Wafi A., Szabó-Bárdos E., Horváth O., Makó E., Jakab M., Zsirka B. Coumarin-based quantification of hydroxyl radicals and other reactive species generated on excited nitrogen-doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry. 2021;404: 112913. https://doi.org/10.1016/j.jphotochem.2020.112913

Herman J., Neal S. L. Efficiency comparison of the imidazole plus RNO method for singlet oxygen detection in biorelevant solvents. Analytical and Bioanalytical Chemistry. 2019;411(20): 5287–5296. https://doi.org/10.1007/s00216-019-01910-2

Ijadpanah-Saravi H., Safari M., Khodadadi-Darban A., Rezaei A. Synthesis of titanium dioxide nanoparticles for photocatalytic degradation of cyanide in wastewater. Analytical Letters. 2014;47(10): 1772–1782. https://doi.org/10.1080/00032719.2014.880170

Kayanuma Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Physical Review B. 1988;38(14): 9797–9805. https://doi.org/10.1103/PhysRevB.38.9797

Ovchinnikov O. V., Smirnov M. S., Aslanov S. V. Luminescence quantum yield and recombination constants in colloidal core/shell Ag2S/ZnS and Ag2S/SiO2 quantum dots. Optics and Spectroscopy. 2020;128: 2028–2035. https://doi.org/10.1134/S0030400X2012098X

Athanasekou C. P., Likodimos V., Falaras P. Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. Journal of Environmental Chemical Engineering. 2018;6(6): 7386–7394. https://doi.org/10.1016/j.jece.2018.07.026

Turrens J. F. Mitochondrial formation of reactive oxygen species. The Journal of Physiology. 2003;552(2): 335-44. https://doi.org/10.1113/jphysiol.2003.049478

Fujishima A., Zhang X., Tryk D. A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports. 2008;63(12): 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

Kohtani S., Yoshioka E., Miyabe H. Photocatalytic hydrogenation on semiconductor particles. In: Hydrogenation (ed. I. Karame). IntechOpen. 2012. 340 pp. https://doi.org/10.5772/45732

Bard A. J., Parsons R., Jordan J. Standart potentials in aqueous solutions. Routledge, 1985. 848 pp. https://doi.org/10.1201/9780203738764

Nosaka Y., Nosaka A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews. 2017;117: 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

Belovolova L. V. Reactive oxygen species in aqueous media (A Review). Optics and Spectroscopy. 2020;128: 932–951. https://doi.org/10.1134/S0030400X20070036

Опубликован
2022-11-01
Как цитировать
Овчинников, О. В., Смирнов, М. С., Перепелица, А. С., Асланов, С. В., Попов, В. Н., Гуреев, А. П., Цыбенко, Ф. А., & Хуссейн, А. М. Х. (2022). Фотосенсибилизация активных форм кислорода наночастицами диоксида титана, декорированными квантовыми точками сульфида серебра. Конденсированные среды и межфазные границы, 24(4), 511-522. https://doi.org/10.17308/kcmf.2022.24/10555
Раздел
Оригинальные статьи

Наиболее читаемые статьи этого автора (авторов)