Photoelectric response in sandwich structures based on condensed layers of Ag2S quantum dots passivated with thioglycolic acid

Keywords: Silver sulfide, Activation energy, Charge carrier mobility, Conduction mechanisms, Schottky barrier

Abstract

     The study is aimed at developing a technique for forming a structure with a Schottky barrier in the form of a mltilayer Al-Ag2S-ITO sandwich structure, which includes a condensate of colloidal Ag2S quantum dots passivated with thioglycolic acid molecules (Ag2S/TGA QDs).
      The spectral properties were studied using a USB2000+ spectrometer (Ocean Optics, USA) with a USB-DT light source (Ocean Optics, USA). Electrophysical and photoelectric properties of the structures were studied using a Keysight B1500A semiconductor device analyzer (Keysight tech, USA). The study of the temperature dependences of the properties in the temperature range from 300 to 360 K was carried out in a Shielded room (Faraday cage) placed in a muffle furnace. It was found that the conductivity of the Al-Ag2S-ITO structure is mostly governed by the Schottky barrier at the Al-condensed Ag2S QDs film junction.
       At the junction between the condensed Ag2S QDs film and Al, signs of the formation of a rectifying contact were found.
       Under the action of the optical radiation with a wavelength of 650 nm and less, which corresponds to the most probable exciton transition in the UV-Vis absorption of Ag2S/TGA QDs, an increase in the current was found for the negative branch of the J-V curve.

Downloads

Download data is not yet available.

Author Biographies

Vladimir S. Gurchenko, V. I. Vernadsky Crimean Federal University, 4 prospekt Vernadskogo, Simferopol 295007, Republic of Crimea, Russian Federation

postgraduate student of the
Department of Radiophysics and Electronics, Institute
of Physics and Technology, V. I. Vernadsky Crimean
Federal University (Simferopol, Republic of Crimea,
Russian Federation).

Alim S. Mazinov, V. I. Vernadsky Crimean Federal University, 4 prospekt Vernadskogo, Simferopol 295007, Republic of Crimea, Russian Federation

Dr. Sci. (Phys.–Math.)., Associate
Professor, Head of the Department of Radiophysics
and Electronics, Institute of Physics and Technology,
V. I. Vernadsky Crimean Federal University (Simferopol,
Republic of Crimea, Russian Federation).

Mikhail S. Smirnov, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Dr. Sci. (Phys.–Math.).,
Associate Professor, Department of Optics and
Spectroscopy, Voronezh State University (Voronezh,
Russian Federation).

Irina G. Grevtseva, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.)., Senior
Lecturer at the Department of Optics and Spectroscopy,
Voronezh State University, Voronezh, Russian
Federation.

Lolita P. Nesterenko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.).,
Associate Professor, Department of Experimental
Physics, Voronezh State University (Voronezh, Russian
Federation).

Oleg V. Ovchinnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.)., Full
Professor, Head of the Department of Optics and
Spectroscopy, Voronezh State University (Voronezh,
Russian Federation).

References

Alharthi S. S., Alzahrani A., Razvi M. A. N., Badawi A., Althobaiti M. G. Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30: 3878–3885. https://doi.org/10.1007/s10904-020-01519-4

Chand S., Sharma E., Sharma P. Phase change induced quantization in NIR emitting Ag2S nanocrystals: Structural and optical response for solar energy applications. Journal of Alloys and Compounds V. 2019;770: 1173–1180. https://doi.org/10.1016/j.jallcom.2018.08.133

Cotta M. A. Quantum dots and their applications: what lies ahead? ACS Applied Nano Materials. 2020;3(6): 4920–4924. https://doi.org/10.1021/acsanm.0c01386

Lei Y., Xu S., Ding M., Li L., Sun Q., Wang Z. L. Enhanced photocatalysis by synergistic piezotronic effect and exciton–plasmon interaction based on (Ag-Ag2S)/BaTiO3 heterostructures. Advanced Functional Materials. 2020;30(51): 2005716. https://doi.org/10.1002/adfm.202005716

Gao H., Wang F., Wang S., Wang X., Yi Z., Yang H. Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin. 2019;115: 140–149. https://doi.org/10.1016/j.materresbull.2019.03.021

Tretyakov I., Svyatodukh S., Perepelitsa A., … Goltsman G. Ag2S QDs/Si Heterostructure-Based Ultrasensitive SWIR Range Detector. Nanomaterials. 2020; 10(5): 861. https://doi.org/10.3390/nano10050861

Smirnov M. S., Ovchinnikov O. V. IR luminescence mechanism in colloidal Ag2S quantum dots. Journal of Luminescence. 2020; 227: 117526. https://doi.org/10.1016/j.jlumin.2020.117526

Mir W. J., Swarnkar A., Sharma R., Katti A., Adarsh K. V., Nag A. Origin of unusual excitonic absorption and emission from colloidal Ag2S nanocrystals: ultrafast photophysics and solar cell. The Journal of Physical Chemistry Letters. 2015;6: 3915−3922. https://doi.org/10.1021/acs.jpclett.5b01692

Ruiz D., del Rosal B., Acebron M., … Juarez B. H. Ag/Ag2S Nanocrystals for high Sensitivity near-infrared luminescence nanothermometry. Advanced Functional Materials. 2016;27: 1604629. https://doi.org/10.1002/adfm.201604629

Zamiri R., Abbastabar Ahangar H., Zakaria A., Zamiri G., Shabani M., Singh B., Ferreira J. M. F. The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared. Chemistry Central Journal. 2015;9(1): 1–6. https://doi.org/10.1186/s13065-015-0099-y

Lesnyak V., Gaponik N., Eychmüller A. Colloidal semiconductor nanocrystals: the aqueous approach. Chemical Society. Reviews. 2013;42: 2905–2929. https://doi.org/10.1039/c2cs35285k

Gilmore R. H., Liu Y., Shcherbakov-Wu W., … Tisdale W. A. Epitaxial dimers and Auger-assisted detrapping in PbS quantum dot. Solids Matter. 2019;1: 250–265. https://doi.org/10.1016/j.matt.2019.05.015

Zhang Y., Xia J., Li C., … Li Q. Near-infrared-emitting colloidal Ag2S quantum dots excited by an 808 nm diode laser. Journal of Materials Science. 2017;52(16): 9424–9429. https://doi.org/10.1007/s10853-017-1131-5

Kondratenko T. S., Zvyagin A. I., Smirnov M. S., Grevtseva I. G., Perepelitsa A. S., Ovchinnikov O. V. Luminescence and nonlinear optical properties of colloidal Ag2S quantum dots. Journal of Luminescence. 2019;208: 193–200. https://doi.org/10.1016/j.jlumin.2018.12.042

Wu Q., Zhou M., Shi J., Li Q., Yang M., Zhang Z. Synthesis of water-soluble Ag2S Quantum dots with fluorescence in the second Near-Infrared window for turn-on detection of Zn(II) and Cd(II). Analytical Chemistry. 2017;89(12): 6616–6623. https://doi.org/10.1021/acs.analchem.7b00777

Ovchinnikov O. V., Grevtseva I. G., Smirnov M. S., … Matsukovich A.S. Effect of thioglycolic acid molecules on luminescence properties of Ag2S quantum dots. Optical and Quantum Electronics. 2020;52: 198-1-23. https://doi.org/10.1007/s11082-020-02314-8

Kondratenko T., Ovchinnikov O., Grevtseva I., … Tatianina E. Thioglycolic acid FTIR spectra on Ag2S quantum dots interfaces. Materials. 2020;13: 909-1-15. https://doi.org/10.3390/ma13040909

Vardara D. O., Aydin S., Hocaoglu I., Acar F. H. Y., Basaran N. Effects of silver sulfide quantum dots coated with 2-mercaptopropionic acid on genotoxic and apoptotic pathways in vitro. Chemico-Biological Interactions. 2018;291: 212–219. https://doi.org/10.1016/j.cbi.2018.06.032

Jiang P., Wang R., Chen Z. Thiol-based non-injection synthesis of near-infrared Ag2S/ZnS core/shell quantum dots. RSC Advances. 2015;5: 56789–56793. https://doi.org/10.1039/C5RA08008H

Duman F.D ., Erkisa M., Khodadust R., Ari F., Ulukaya E., Acar H. Y. Folic acid-conjugated cationic Ag2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine (Lond). 2017;12(19): 2319–2333. https://doi.org/10.2217/nnm-2017-0180

Liu Q., Pu Y., Zhao Z., Wang J., Wang D. Synthesis of silver sulfide quantum dots via the liquid–liquid interface reaction in a rotating packed bed reactor. Transactions of Tianjin University. 2020;26: 273–282. https://doi.org/10.1007/s12209-019-00228-5

Ovchinnikov O. V., Aslanov S. V., Smirnov M. S., Grevtseva I. G., Perepelitsa A. S. Photostimulated control of luminescence quantum yield for colloidal Ag2S/2-MPA quantum dots. RSC Advances. 2019;9: 37312–37320. https://doi.org/10.1039/C9RA07047H

Borovaya M., Horiunova I., Plokhovska S., Pushkarova N., Blume Y., Yemets A. Synthesis, properties and bioimaging applications of silver-based quantum dots. International Journal of Molecular Sciences. 2021;22: 12202 (1-23). https://doi.org/10.3390/ijms222212202

Tang R., Xu B., Shen D., Sudlow G., Achilefu S. Ultrasmall visible-to-near-infrared emitting silver-sulfide quantum dots for cancer detection and imaging. ACS Nano. 2015;9(1): 220–230. https://doi.org/10.1021/nn5071183

Ding C., Huang Y., Shen Z., Chen X. Synthesis and bioapplications of Ag2S quantum dots with Near-Infrared fluorescence. Advanced Materials. 2021;33: 2007768. https://doi.org/10.1002/adma.202007768

Ovchinnikov O., Aslanov S., … Grevtseva I. Colloidal Ag2S/SiO2 core/shell quantum dots with IR luminescence. Optical Materials Express. 2021;11(1): 89–104. https://doi.org/10.1364/OME.411432

Kang M. H., Kim S. H., Jang S., … Park J. K. Synthesis of silver sulfide nanoparticles and their photodetector applications. RSC Advances. 2018;8(50): 28447–28452. https://doi.org/10.1039/C8RA03306D

Feng J., Li X., Shi Z., … Zhu L. 2D ductile transition metal chalcogenides (TMCs): novel high-per-formance Ag2S anosheets for ultrafast photonics. Advanced Optical Materials. 2019;8(6): 1901762. https://doi.org/10.1002/adom.201901762

Badali Y., Azizian-Kalandaragh Y., Akhlaghi E. A., Altindal S. Ultrasound-assisted method for preparation of Ag2S nanostructures: fabrication of Au/Ag2S-PVA/n-Si Schottky barrier diode and exploring their electrical properties. Journal of Electronic Materials. 2020;49(1): 444–453. https://doi.org/10.1007/S11664-019-07708-3

Gusev A. N., Mazinov A. S., Shevchenko A. I., Tyutyunik A. S., Gurchenko V. S., Braga E. V. Research of heterojunctions based on the system of fullerene and hydrazine. Applied Physics. 2019;6: 48–53. (In Russ., abstact in Eng.). Available at: https://applphys.orion-ir.ru/appl-19/19-6/PF-19-6-48.pdf

Lin S., Feng Y., Wen X. et. al. Theoretical and experimental investigation of the electronic structure and quantum confinement of wet-chemistry synthesized Ag2S nanocrystals. The Journal of Physical Chemistry C. 2015;119(1): 867–872. https://doi.org/10.1021/jp511054g

Kayanuma Y. Quantum-size effects of interacting electrons and hHoles in semiconductor microcrystals with spherical shape. Physical Review B. 1988;38(14): 9797–9805. https://doi.org/10.1103/PhysRevB.38.9797

Lu X., Li L., Zhang W., Wang C. Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology. 2005;16(10): 2233–2237. https://doi.org/10.1088/0957-4484/16/10/043

Sugiyama K., Ishii H., Ouchi Y., Seki K. Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies. Journal of Applied Physics. 2000; 87(1): 295–298. https://doi.org/10.1063/1.371859

Kim S. Y., Lee J.-L., Kim K.-B., Tak Y.-H. Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes. Journal of Applied Physics. 2004;95(5): 2560–2563. https://doi.org/10.1063/1.1635995

Tubtimtae A., Cheng K.-Y., Lee M.-W. Ag2S quantum dot-sensitized WO3 photoelectrodes for solar cells. Journal of Solid State Electrochemistry. 2014;18: 1627–1633. https://doi.org/10.1007/s10008-014-2385-3

Lide D. R., Weast R. C. CRC handbook of cChemistry and physics. CRC Press, Boca Raton, FL, 1986.

Chen H., Lei Y., YangX., ZhaoC., Zheng Z. Using a CdS under-layer to suppress charge carrier recombination at the Ag2S/FTO interface. Journal of Alloys and Compounds. 2021;879: 160348. https://doi.org/10.1016/j.jallcom.2021.160348

Tyutyunik A. S., Gurchenko V. S., Mazinov A. S. Investigation of temperature dependences of currentvoltage characteristics of hybrid organic materials based on zinc complexes. Applied Physics. 2021;5: 81–87. (In Russ., abstract in Eng.). https://doi.org/10.51368/1996-0948-2021-5-81-87

Lengyel G. Schottky emission and conduction in some organic insulating materials. Journal of Applied Physics. 1966; 37(2): 807-810. https://doi.org/10.1063/1.1708261

Matsumura M., Jinde Y., Akai T., Kimura T. Analysis of current-voltage characteristics of organic electroluminescent devices on the basis of Schottky emission mechanism. Japanese Journal of Applied Physics. 1996;35(11): 5735–5739. https://doi.org/10.1143/jjap.35.5735

Zhu Y. B., Geng K., Cheng Z. S., Yao R. H. Spacecharge-limited current injection into free space and trap-filled solid. IEEE Transactions on Plasma Science. 2021;49(7): 2107–2112. https://doi.org/10.1109/TPS.2021.3084461

Gupta R. K., Ghosh K., Kahol P. K. Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current

Applied Physics. 2009;9(5): 933–936. https://doi.org/10.1016/j.cap.2008.09.007

Dhifaoui H., Aloui W., Bouazizi A. Optical, electrochemical and electrical properties of p-N,Ndimethyl-amino-benzylidene-malononitrile thin films. Materials Research Express. 2020;7(4): 045101. https://doi.org/10.1088/2053-1591/ab7dfb

Gusev A., Braga E., Tyutyunik A., … Linert W. Synthesis, photoluminescence and electrical study of pyrazolone-based azomethine ligand Zn(II) complexes. Materials. 2020;13(24): 5698-1-12. https://doi.org/10.3390/ma13245698

Perepelitsa A. S., Smirnov M. S., Ovchinnikov O. V., Latyshev A. N., Kotko A. S. Thermostimulated luminescence of colloidal Ag2S quantum dots. J. of Luminescence. 2018; 198: 357–363. https://doi.org/10.1016/j.jlumin.2018.02.009

Published
2023-05-11
How to Cite
Gurchenko, V. S., Mazinov, A. S., Smirnov, M. S., Grevtseva, I. G., Nesterenko, L. P., & Ovchinnikov, O. V. (2023). Photoelectric response in sandwich structures based on condensed layers of Ag2S quantum dots passivated with thioglycolic acid. Condensed Matter and Interphases, 25(2), 190-197. https://doi.org/10.17308/kcmf.2023.25/11100
Section
Original articles

Most read articles by the same author(s)