Effect of plasmonic Au nanoparticles on IR luminescence of Ag2S quantum dots

Keywords: Quantum dot, Plasmonic nanoparticles, Plasmon resonance, IR luminescence, Plasmon-exciton interaction

Abstract

Luminescent manifestations of the interaction of Ag2S quantum dots (QDs) with Au nanorods (NRs) depending on the overlap degree of the corresponding luminescence bands and plasmon resonance peaks have been experimentally established. Under spectral resonance conditions, the possibility of controlling the intensity of QDs luminescence by changing the interaction with Au NRs by varying the distance between the components of the plasmon-exciton mixture has been demonstrated. In turn it determines the influence of the near-field of metal nanoparticles on photoprocesses in Ag2S QDs.

The detuning of the spectral resonance due to the change in the Au QDs length leads to the asymmetry of the spectral contour of the Ag2S QDs luminescence band, which may be due to the manifestation of the Fano effect during plasmonexciton interaction, taking into account the inhomogeneous broadening of the corresponding bands 

Downloads

Download data is not yet available.

Author Biographies

Irina G. Grevtseva, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Associate Professor, Department of Optics and
Spectroscopy, Voronezh State University (Voronezh,
Russian Federation)

Oleg V. Ovchinnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full
Professor, Dean of the Faculty of Physics, Head of the
Department of Optics and Spectroscopy, Voronezh
State University (Voronezh, Russian Federation)

Mikhail S. Smirnov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Professor,
Department of Optics and Spectroscopy, Voronezh
State University (Voronezh, Russian Federation)

Anatoly N. Latyshev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.),
Professor, Department of Optics and Spectroscopy,
Voronezh State University (Voronezh, Russian
Federation)

Sergey Vladimirovich Aslanov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–
Math.), Lecturer, Department of Optics and
Spectroscopy, Voronezh State University (Voronezh,
Russian Federation)

Marina Sergeevna Astashkina, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

postgraduate student, Department of Optics and Spectroscopy, Voronezh State University (Voronezh, Russian
Federation)

References

Cotta M. A. Quantum dots and their applications: What lies ahead? ACS Applied Nano Materials. 2020;3(6): 4920–4924. https://doi.org/10.1021/acsanm.0c01386

Bera D., Qian L., Tseng T. K., Holloway P. H. Quantum dots and their multimodal applications: a review. Materials. 2010;3(4): 2260–2345. https://doi.org/10.3390/ma3042260

Reshma V. G., Mohanan P.V. Quantum dots: applications and safety consequences. Journal of Luminescence. 2019;205: 287–298. https://doi.org/10.1016/j.jlumin.2018.09.015

Perepelitsa A. S., Aslanov S. V., Ovchinnikov O. V., … Kondratenko T. S. Photosensitising reactive oxygen species with titanium dioxide nanoparticles decorated with PbS quantum dots. Condensed Matter and Interphases. 2023;25(2): 215–224. https://doi.org/10.17308/kcmf.2023.25/11103

Caponetti V., Trzcinski J. W., Cantelli A., … Montalti M. Self-assembled biocompatible fluorescent nanoparticles for bioimaging. Frontiers in Chemistry. 2019;7:168. https://doi.org/10.3389/fchem.2019.00168

Gu Yi-P., Cui R., Zhang Z.-L., Xie Z.-X., Pang D.‑W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. American Chemical Society. 2012;134(1): 79–82. https://doi.org/10.1021/ja2089553

Park Y. S., Roh J., Diroll B. T., Schalle R. D., Klimov V. I. Colloidal quantum dot lasers. Nature Reviews Materials. 2021;6(5): 382–401. https://doi.org/10.1038/s41578-020-00274-9

Gurchenko V. S., Mazinov A. S., Smirnov M. S., Grevtseva I. G., Nesterenko L. P., Ovchinnikov O. V. Photoelectric response in sandwich structures based on condensed layers of Ag2S quantum dots passivated with thioglycolic acid. Condensed Matter and Interphases. 2023;25(2): 190–197. https://doi.org/10.17308/kcmf.2023.25/11100

Yin Q., Zhang W., Zhou Y., Wang R., Zhao Z., Liu C. High efficiency luminescence from PbS quantum dots embedded glasses for near-infrared light emitting diodes. Journal of Luminescence. 2022;250: 119065. https://doi.org/10.1016/j.jlumin.2022.119065

Ovchinnikov O. V., Smirnov M. S., Kondratenko T. S., … Perepelitsa A. S. Förster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules. Journal of Nanoparticle Research. 2017;19(12): 403. https://doi.org/10.1007/s11051-017-4093-2

Smirnov M. S., Ovchinnikov O. V., Grevtseva I. G., … Kondratenko T. S. Control of direction of nonradiative resonance energy transfer in hybrid associates of colloidal Ag2S/TGA QDs with thionine molecules. Journal of Nanoparticle Research. 2019;21(4): 67. https://doi.org/10.1007/s11051-019-4487-4

Guo R., Derom S., Väkeväinen A. I., … Törmä P. Controlling quantum dot emission by plasmonic nanoarrays. Optics Express. 2015;23: 28206–28215. https://doi.org/10.1364/OE.23.028206

Luo Y., Zhao J. Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Research. 2019;12(9): 2164–2171. https://doi.org/10.1007/s12274-019-2390-z

Gupta S. N., Bitton O., Neuman T., … Haran G. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nature Communications. 2021;12: 1310. https://doi.org/10.1038/s41467-021-21539-z

He Y., Zhu K.-D. Fano effect and quantum entanglement in hybrid semiconductor quantum dotmetal nanoparticle system. Sensors. 2017;17(6): 1445. https://doi.org/10.3390/s17061445

Chen H.-J. Fano resonance induced fast to slow lightin a hybrid semiconductor quantum dot and metal nanoparticle system. Laser Physics Letters. 2020;17: 025201. https://doi.org/10.1088/1612-202X/ab60ac

Westmoreland D. E., McClelland K. P., Perez K. A., Schwabacher J. C., Zhang Z., Weiss E. A. Properties of quantum dots coupled to plasmons and optical cavities. The Journal of Chemical Physics. 2019;151: 210901 https://doi.org/10.1063/1.5124392

Grevtseva I., Ovchinnikov O., Smirnov M., … Selyukov A. IR luminescence of plexcitonic structures based on Ag2S/L-Cys quantum dots and Au nanorods. Optics Express. 2022;30: 4668–4679. https://doi.org/10.1364/OE.447200

Derepko V. N., Ovchinnikov O. V., Smirnov M. S., … Turishchev S. Yu. Plasmon-exciton nanostructures, based on CdS quantum dots with exciton and trap state luminescence. Journal of Luminescence. 2022;248: 118874. https://doi.org/10.1016/j.jlumin.2022.118874

He R., Meunier M., Dong Zh., Liu X. Interplay of Purcell effect and extraction efficiency in CsPbBr3 quantum dots coupled to Mie resonators. Nanoscale. 2023;15: 1652–1660. https://doi.org/10.1039/D2NR05945B

Borrero Landazabal D., Meza Olivo A., Garay Palmett K., Montiel R. S. Reduction of the fluorescence lifetime of quantum dots in presence of plasmonic nanostructures. Journal of Physics: Conference Series. 2019;1159: 12004. https://doi.org/10.1088/1742-6596/1159/1/012004

Ruiz D., del Rosal B., Acebrón M., Juarez B. H. Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry. Advanced Functional Materials. 2017;27(6): 1604629-1-9. https://doi.org/10.1002/adfm.201604629

Grevtseva I. G. , Chev ychelova T. A. , Derepko V. N., … Parshina A. S. Spectral manifestations of the exciton-plasmon interaction of Ag2S quantumdots with silver and gold nanoparticles. Condensed Matter and Interphases. 2021;23(1): 25–31. https://doi.org/10.17308/kcmf.2021.23/3294

Ovchinnikov O. V., Smirnov M. S., Grevtseva I. G., … Kondratenko T. S. Luminescent properties of colloidal mixtures of Zn0.5Cd0.5S quantum dots and gold nanoparticles. Condensed Matter and Interphases. 2021;23(1): 49–55. https://doi.org/10.17308/kcmf.2021.23/3302

Oh E., Huston A. L., Shabaev A., … Medintz I. L. Energy transfer sensitization of luminescent gold nanoclusters: more than just the classical Förster mechanism. Scientific Reports. 2016;6: 35538. https://doi.org/10.1038/srep35538

Kamat P. V., Shanghavi B. Interparticle electron transfer in meta/semiconductor composites. Picosecond dynamics of CdS-capped gold nanoclusters. The Journal of Physical Chemistry B. 1997;101: 7675–7679. https://doi.org/10.1021/jp9709464

Mondal N., Samanta A. Ultrafast charge transfer and trapping dynamics in a colloidal mixture of similarly charged CdTe quantum dots and silver nanoparticles. The Journal of Physical Chemistry C. 2016;120: 650–658. https://doi.org/10.1021/acs.jpcc.5b08630

Ovchinnikov O. V., Aslanov S. V., Smirnov M. S., … Grevtseva I. G., Perepelitsa A. S. Photostimulated control of luminescence quantum yield for colloidal Ag2S/2-MPA quantum dots. RSC Advances. 2019;9: 37312–37320. https://doi.org/10.1039/C9RA07047H

Smirnov M. S. , Ovchinnikov O. V. IR luminescence mechanism in colloidal Ag2S quantum dots. Journal of Luminescence. 2020;227: 117526. https://doi.org/10.1016/j.jlumin.2020.117526

Zeinidenov A. K., Ibraev N. Kh., Kucherenko M. G. Effect of silver nanoparticles on electronic transactions in the dye molecules and lasing characteristics of liquid lasers on their basis. Vestnik of the Orenburg State University. 2014;9(170): 96–102. (In Russ.). Available at: https://elibrary.ru/item.asp?id=23161960

Purcell E. M. Spontaneous emission probabilities at radio frequencies. In: Confined Electrons and Photons. Burstein E., Weisbuch C. (eds). NATO ASI Series. Springer, Boston, MA. 1995. vol. 340. https://doi.org/10.1007/978-1-4615-1963-8_40

Published
2024-07-12
How to Cite
Grevtseva, I. G., Ovchinnikov, O. V., Smirnov, M. S., Latyshev, A. N., Aslanov, S. V., & Astashkina, M. S. (2024). Effect of plasmonic Au nanoparticles on IR luminescence of Ag2S quantum dots. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(3), 424-430. https://doi.org/10.17308/kcmf.2024.26/12217
Section
Original articles

Most read articles by the same author(s)