Влияние плазмонных наночастиц Au на ИК люминесценцию ансамбля квантовых точек Ag2S

  • Ирина Геннадьевна Гревцева ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-1964-1233
  • Олег Владимирович Овчинников ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-6032-9295
  • Михаил Сергеевич Смирнов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-8765-0986
  • Анатолий Николаевич Латышев ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-7271-0795
  • Сергей Владимирович Асланов ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-3961-2480
  • Марина Сергеевна Асташкина ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация
Ключевые слова: квантовая точка, плазмонные наночастицы, плазмонный резонанс, ИК люминесценция, плаз- монэкситонное взаимодействие

Аннотация

Экспериментально установлены люминесцентные проявления взаимодействия квантовых точек (КТ) Ag2S с наностержнями (НСт) Au в зависимости от степени перекрытия соответствующих полос люминесценции и пиков плазмонного резонанса. В условиях спектрального резонанса показана возможность управления интенсивностью люминесценции КТ за счет изменения взаимодействия с НСт Au при вариации расстояния между компонентами плазмон-экситонной смеси, которое в свою очередь определяет влияние ближнего поля металлических наночастиц на фотопроцессы в КТ Ag2S.

Расстройка спектрального резонанса за счет изменения длины НСт Au приводит к асимметрии спектрального контура полосы свечения КТ Ag2S, которая может быть обусловлена проявлением эффекта Фано при плазмон-экситонном взаимодействии с учетом неоднородного уширения соответствующих полос

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Ирина Геннадьевна Гревцева, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

к. ф.-м. н., доцент кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Олег Владимирович Овчинников, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., декан физического факультета, профессор кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Михаил Сергеевич Смирнов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., профессор кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Анатолий Николаевич Латышев, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., профессор-консультант кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Сергей Владимирович Асланов, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

к. ф.-м. н., преподаватель кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Марина Сергеевна Асташкина, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

аспирант кафедры оптики и спектроскопии, Воронежский государственный университет (Воронеж, Российская Федерация)

Литература

Cotta M. A. Quantum dots and their applications: What lies ahead? ACS Applied Nano Materials. 2020;3(6): 4920–4924. https://doi.org/10.1021/acsanm.0c01386

Bera D., Qian L., Tseng T. K., Holloway P. H. Quantum dots and their multimodal applications: a review. Materials. 2010;3(4): 2260–2345. https://doi.org/10.3390/ma3042260

Reshma V. G., Mohanan P.V. Quantum dots: applications and safety consequences. Journal of Luminescence. 2019;205: 287–298. https://doi.org/10.1016/j.jlumin.2018.09.015

Perepelitsa A. S., Aslanov S. V., Ovchinnikov O. V., … Kondratenko T. S. Photosensitising reactive oxygen species with titanium dioxide nanoparticles decorated with PbS quantum dots. Condensed Matter and Interphases. 2023;25(2): 215–224. https://doi.org/10.17308/kcmf.2023.25/11103

Caponetti V., Trzcinski J. W., Cantelli A., … Montalti M. Self-assembled biocompatible fluorescent nanoparticles for bioimaging. Frontiers in Chemistry. 2019;7:168. https://doi.org/10.3389/fchem.2019.00168

Gu Yi-P., Cui R., Zhang Z.-L., Xie Z.-X., Pang D.‑W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. American Chemical Society. 2012;134(1): 79–82. https://doi.org/10.1021/ja2089553

Park Y. S., Roh J., Diroll B. T., Schalle R. D., Klimov V. I. Colloidal quantum dot lasers. Nature Reviews Materials. 2021;6(5): 382–401. https://doi.org/10.1038/s41578-020-00274-9

Gurchenko V. S., Mazinov A. S., Smirnov M. S., Grevtseva I. G., Nesterenko L. P., Ovchinnikov O. V. Photoelectric response in sandwich structures based on condensed layers of Ag2S quantum dots passivated with thioglycolic acid. Condensed Matter and Interphases. 2023;25(2): 190–197. https://doi.org/10.17308/kcmf.2023.25/11100

Yin Q., Zhang W., Zhou Y., Wang R., Zhao Z., Liu C. High efficiency luminescence from PbS quantum dots embedded glasses for near-infrared light emitting diodes. Journal of Luminescence. 2022;250: 119065. https://doi.org/10.1016/j.jlumin.2022.119065

Ovchinnikov O. V., Smirnov M. S., Kondratenko T. S., … Perepelitsa A. S. Förster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules. Journal of Nanoparticle Research. 2017;19(12): 403. https://doi.org/10.1007/s11051-017-4093-2

Smirnov M. S., Ovchinnikov O. V., Grevtseva I. G., … Kondratenko T. S. Control of direction of nonradiative resonance energy transfer in hybrid associates of colloidal Ag2S/TGA QDs with thionine molecules. Journal of Nanoparticle Research. 2019;21(4): 67. https://doi.org/10.1007/s11051-019-4487-4

Guo R., Derom S., Väkeväinen A. I., … Törmä P. Controlling quantum dot emission by plasmonic nanoarrays. Optics Express. 2015;23: 28206–28215. https://doi.org/10.1364/OE.23.028206

Luo Y., Zhao J. Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Research. 2019;12(9): 2164–2171. https://doi.org/10.1007/s12274-019-2390-z

Gupta S. N., Bitton O., Neuman T., … Haran G. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nature Communications. 2021;12: 1310. https://doi.org/10.1038/s41467-021-21539-z

He Y., Zhu K.-D. Fano effect and quantum entanglement in hybrid semiconductor quantum dotmetal nanoparticle system. Sensors. 2017;17(6): 1445. https://doi.org/10.3390/s17061445

Chen H.-J. Fano resonance induced fast to slow lightin a hybrid semiconductor quantum dot and metal nanoparticle system. Laser Physics Letters. 2020;17: 025201. https://doi.org/10.1088/1612-202X/ab60ac

Westmoreland D. E., McClelland K. P., Perez K. A., Schwabacher J. C., Zhang Z., Weiss E. A. Properties of quantum dots coupled to plasmons and optical cavities. The Journal of Chemical Physics. 2019;151: 210901 https://doi.org/10.1063/1.5124392

Grevtseva I., Ovchinnikov O., Smirnov M., … Selyukov A. IR luminescence of plexcitonic structures based on Ag2S/L-Cys quantum dots and Au nanorods. Optics Express. 2022;30: 4668–4679. https://doi.org/10.1364/OE.447200

Derepko V. N., Ovchinnikov O. V., Smirnov M. S., … Turishchev S. Yu. Plasmon-exciton nanostructures, based on CdS quantum dots with exciton and trap state luminescence. Journal of Luminescence. 2022;248: 118874. https://doi.org/10.1016/j.jlumin.2022.118874

He R., Meunier M., Dong Zh., Liu X. Interplay of Purcell effect and extraction efficiency in CsPbBr3 quantum dots coupled to Mie resonators. Nanoscale. 2023;15: 1652–1660. https://doi.org/10.1039/D2NR05945B

Borrero Landazabal D., Meza Olivo A., Garay Palmett K., Montiel R. S. Reduction of the fluorescence lifetime of quantum dots in presence of plasmonic nanostructures. Journal of Physics: Conference Series. 2019;1159: 12004. https://doi.org/10.1088/1742-6596/1159/1/012004

Ruiz D., del Rosal B., Acebrón M., Juarez B. H. Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry. Advanced Functional Materials. 2017;27(6): 1604629-1-9. https://doi.org/10.1002/adfm.201604629

Grevtseva I. G. , Chev ychelova T. A. , Derepko V. N., … Parshina A. S. Spectral manifestations of the exciton-plasmon interaction of Ag2S quantumdots with silver and gold nanoparticles. Condensed Matter and Interphases. 2021;23(1): 25–31. https://doi.org/10.17308/kcmf.2021.23/3294

Ovchinnikov O. V., Smirnov M. S., Grevtseva I. G., … Kondratenko T. S. Luminescent properties of colloidal mixtures of Zn0.5Cd0.5S quantum dots and gold nanoparticles. Condensed Matter and Interphases. 2021;23(1): 49–55. https://doi.org/10.17308/kcmf.2021.23/3302

Oh E., Huston A. L., Shabaev A., … Medintz I. L. Energy transfer sensitization of luminescent gold nanoclusters: more than just the classical Förster mechanism. Scientific Reports. 2016;6: 35538. https://doi.org/10.1038/srep35538

Kamat P. V., Shanghavi B. Interparticle electron transfer in meta/semiconductor composites. Picosecond dynamics of CdS-capped gold nanoclusters. The Journal of Physical Chemistry B. 1997;101: 7675–7679. https://doi.org/10.1021/jp9709464

Mondal N., Samanta A. Ultrafast charge transfer and trapping dynamics in a colloidal mixture of similarly charged CdTe quantum dots and silver nanoparticles. The Journal of Physical Chemistry C. 2016;120: 650–658. https://doi.org/10.1021/acs.jpcc.5b08630

Ovchinnikov O. V., Aslanov S. V., Smirnov M. S., … Grevtseva I. G., Perepelitsa A. S. Photostimulated control of luminescence quantum yield for colloidal Ag2S/2-MPA quantum dots. RSC Advances. 2019;9: 37312–37320. https://doi.org/10.1039/C9RA07047H

Smirnov M. S. , Ovchinnikov O. V. IR luminescence mechanism in colloidal Ag2S quantum dots. Journal of Luminescence. 2020;227: 117526. https://doi.org/10.1016/j.jlumin.2020.117526

Zeinidenov A. K., Ibraev N. Kh., Kucherenko M. G. Effect of silver nanoparticles on electronic transactions in the dye molecules and lasing characteristics of liquid lasers on their basis. Vestnik of the Orenburg State University. 2014;9(170): 96–102. (In Russ.). Available at: https://elibrary.ru/item.asp?id=23161960

Purcell E. M. Spontaneous emission probabilities at radio frequencies. In: Confined Electrons and Photons. Burstein E., Weisbuch C. (eds). NATO ASI Series. Springer, Boston, MA. 1995. vol. 340. https://doi.org/10.1007/978-1-4615-1963-8_40

Опубликован
2024-07-12
Как цитировать
Гревцева, И. Г., Овчинников, О. В., Смирнов, М. С., Латышев, А. Н., Асланов, С. В., & Асташкина, М. С. (2024). Влияние плазмонных наночастиц Au на ИК люминесценцию ансамбля квантовых точек Ag2S. Конденсированные среды и межфазные границы, 26(3), 424-430. https://doi.org/10.17308/kcmf.2024.26/12217
Раздел
Оригинальные статьи

Наиболее читаемые статьи этого автора (авторов)