Formation of hybrid nanostructures based on Zn0.5Cd0.5S quantum dots and silver nanoparticles for nonlinear optical applications in the near ultraviolet

Keywords: Nonlinear refraction, Nonlinear absorption, Quantum dot, Zn0.5Cd0.5S, Plasmonic nanoparticle, Z-scan

Abstract

The goal of this study was to establish optimal conditions for the formation of hybrid nanostructures based on quantum dots and metal nanoparticles with a nonlinear optical response in the near ultraviolet. The relevance of this study is confirmed by the need to create passive devices for controlling the parameters of laser radiation in the presence of semiconductor colloidal quantum dots (QDs) and plasmonic nanoparticles (NPs). Manifestations of interaction in the nonlinear optical response of Zn0.5Cd0.5S QDs and spherical Ag NPs (10 nm) in the field of laser pulses of 10 ns duration at a probing radiation wavelength of 355 nm have been established using the Z-scan method. Manifestations  of the formation of hybrid nanostructures have been established using transmission electron microscopy and optical absorption and luminescence spectroscopy. The interaction of colloidal QDs and NPs was manifested as the recombination luminescence
quenching of the former with a peak at a wavelength of 450-480 nm. For ensembles of colloidal Zn0.5Cd0.5S QDs with an average size (2.0, 2.2, 2.4 nm), nonlinear refraction (defocusing) of 10 ns laser pulses in the near ultraviolet (355 nm) was established, the coefficient of which increased with increase in QDs. It has been established that during the interaction of Zn0.5Cd0.5S QDs with Ag NPs, the suppression of nonlinear refraction was observed against the background of a twelvefold increase in the nonlinear absorption coefficient. It was concluded that the most probable reason for the observed changes in the nonlinear optical response is the polarizing effect of plasmonic Ag NPs

Downloads

Download data is not yet available.

Author Biographies

Andrey I. Zvyagin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Lecturer, Department of Optics and Spectroscopy,
Voronezh State University (Voronezh, Russian
Federation)

Tamara A. Chevychelova, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Lecturer, Department of
Optics and Spectroscopy, Voronezh State University
(Voronezh, Russian Federation)

Mikhail S. Smirnov, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Associate
Professor, Professor at the Department of Optics and
Spectroscopy, Voronezh State University (Voronezh,
Russian Federation)

Oleg V. Ovchinnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full
Professor, Dean of the Faculty of Physics, Head of the
Department of Optics and Spectroscopy, Voronezh
State University (Voronezh, Russian Federation)

Anatoly N. Latyshev, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full
Professor, Consulting Professor at the Department of
Optics and Spectroscopy, Voronezh State University
(Voronezh, Russian Federation)

References

Cao E., Lin W., Sun M., Liang W., Song Yi. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics. 2018;7(1): 145–167. https://doi.org/10.1515/nanoph-2017-0059

Hu S., Ren Y., Wang Y., … Tang Y. Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots. Beilstein Journal of Nanotechnology. 2019;10: 22–31. https://doi.org/10.3762/bjnano.10.3

Zvyagin A. I., Perepelitsa A. S., Ovchinnikov O. V., Smirnov M. S., Ganeev R. A. Nonlinear optical properties of associates of erythrosine molecules and gold nanoparticles. Materials Research Express. 2019;6: 1150c8. https://doi.org/10.1088/2053-1591/ab4e2a

Ovchinnikov O. V., Smirnov M. S., Chevychelova T. A., Zvyagin A. I., Selyukov A. S. Nonlinear absorption enhancement of Methylene Blue in the presence of Au/SiO2 core/shell nanoparticles. Dyes and Pigments. 2022;197: 109829. https://doi.org/10.1016/j.dyepig.2021.109829

Zvyagin A. I., Chevychelova T. A., Perepelitsa A. S., Smirnov M. S., Ovchinnikov O. V. Formation of plasmon-exciton nanostructures based on quantum dots and metal nanoparticles with a nonlinear optical response. Condensed Matter and Interphases. 2023;25(3): 350–358. https://doi.org/10.17308/kcmf.2023.25/11258

Davoodi F., Talebi N. Plasmon-exciton interactions in nanometer-thick gold-WSe2 multilayer structures: implications for photodetectors, sensors, and light-emitting devices. ACS Applied Nano Materials. 2021;4(6): 6067–6074. https://doi.org/10.1021/acsanm.1c00889

Grevtseva I. G., Chevychelova T. A., Derepko V. N., … Parshina A. S. Spectral manifestations of the exciton-plasmon interaction of Ag2S quantum dots with silver and gold nanoparticles. Condensed Matter and Interphases.2021;23(1), 25–31. https://doi.org/10.17308/kcmf.2021.23/3294

Daniel M. C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-re-lated roperties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews. 2004;104(1): 293–346. https://doi.org/10.1021/cr030698+

Komarala V. K., Rakovich Yu. P., Bradley A. L. Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Applied Physics Letters. 2006;89 (25): 253118. https://doi.org/10.1063/1.2422906

Ke L., Katsnelson M. I. Electron correlation effects on exchange interactions and spin excitations in 2D van der Waals materials. Npj Computational Materials. 2021;7(4): 1–8. https://doi.org/10.1038/s41524-020-00469-2

De Vera P., Abril I., Garcia-Molina R. Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks. Physical Chemistry Chemical Physics. 2021;23: 5079–5095. https://doi.org/10.1039/d0cp04951d

Yadav R. K., Aneesh J., Sharma R., … Adarsh K. V. Designing hybrids of graphene oxide and gold nanoparticles for nonlinear optical response. Physical Revied Applied. 2008;9(4): 044043(10). https://doi.org/10.1103/PhysRevApplied.9.044043

Kholmicheva N., Royo Romero L., Cassidy J., Zamkov M. Prospects and applications of plasmon-exciton interactions in the near-field regime. Nanophotonics. 2019;8(4): 613–628. https://doi.org/10.1515/nanoph-2018-0143

Danilov V. V., Panfutova A. S., Khrebtov A. I., Ambrosini S., Videnichev D. A. Optical limiting as result a of photoinduced electron transfer in hybrid systems with CdSe/ZnS quantum dots, C60, and Perylene. Optics Letters. 2012;37(19): 3948–3950. https://doi.org/10.1364/OL.37.003948

Khurgin J. B., Sun G. Plasmonic enhancement of the third order nonlinear optical phenomena: Figures of merit. Optics Express. 2013;21; 27460. https://doi.org/10.1364/oe.21.027460

Kauranen M., Zayats A. V. Nonlinear plasmonics. Nature Photonics. 2012;6; 737–748. https://doi.org/10.1038/nphoton.2012.244

Zhang F., Xiao X., Lu Y-P., Dong J., Chen Y. Broadband enhancement of optical nonlinearity in a Pplasmonic nanocavity coupled with an epsilon-near-zero film. The Journal of Physical Chemistry C. 2023;127; 3726–3732. https://doi.org/10.1021/acs.jpcc.2c07796.

Wang J., Gao M., He Y., Yang Z. Ultrasensitive and ultrafast nonlinear optical characterization of surface plasmons. APL Materials. 2022;10; 030701. https://doi.org/10.1063/5.0083239

Cox J. D., Singh M. R., Von Bilderling C., Bragas A. V. A nonlinear switching mechanism in quantum dot and metallic nanoparticle hybrid systems. Advanced Optical Materials. 2013;1; 460–467. https://doi.org/10.1002/adom.201300105

Milanchian K., Tajalli H., Gilani A. G., Zakerhamidi M. S. Nonlinear optical properties of two oxazine dyes in aqueous solution and polyacrylamide hydrogel using single beam Z-scan. Optical Materials. 2009;32; 12–17. https://doi.org/10.1016/j.optmat.2009.05.011

Delaire J. A., Nakatani K. Linear and nonlinear optical properties of photochromic molecules and materials. Chemical Reviews. 2000;100; 1817–1846. https://doi.org/10.1021/cr980078m

Albert I. D. L., Marks T. J., Ratner M. A. Rational design of molecules with large hyperpolarizabilities. Electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties. The Journal of Physical Chemistry. 1996;100; 9714–9725. https://doi.org/10.1021/jp960860v

Parida M. R., Vijayan C., Rout C. S., Sandeep C. S. S., Philip R. Enhanced optical nonlinearity in b‑AgVO3 nanobelts on decoration with Ag nanoparticles. Applied Physics Letters. 2012;100; 121119. https://doi.org/10.1063/1.3696301

Sreekumar G., Fröbel P., Sreeja S., … Mukharjee C. Nonlinear absorption and photoluminescence emission in nanocomposite films of Fuchsine Basic dye–polymer system. Chemical Physics Letters. 2011;506; 61–65. https://doi.org/10.1016/j.cplett.2011.02.048

Sengupta D., Das P., Mondal B. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application – a review. Renewable & Sustainable Energy Reviews. 2016;60; 356–376. https://doi.org/10.1016/j.rser.2016.01.104

Mathew S., Yella A., Gao P., … Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry. 2014;6; 242–247. https://doi.org/10.1038/nchem.1861

Tam F., Goodrich G. P., Johnson B. R., Halas N. J. Plasmonic enhancement of molecular fluorescence. Nano Letters. 2007;7; 496–501. https://doi.org/10.1021/nl062901x

Edappadikkunnummal S., Nherakkayyil S. N., Kuttippurath V., Chalil D. M., Desai N., Keloth C. Surface plasmon assisted enhancement in the nonlinear optical properties of phenothiazine by gold nanoparticle. The Journal of Physical Chemistry C. 2017;121; 26976–26986. https://doi.org/10.1021/acs.jpcc.7b06528

Francis J., Purayil N. P., Edappadikkunnummal S., Chandrasekharan K., Sangeeth C. S. S. Impact of photoinduced energy transfer and LSPR of Au and Ag nanoparticles on nonlinear optical response of methyl orange. Journal of Molecular Liquids. 2023;390; 123048. https://doi.org/10.1016/j.molliq.2023.123048

Turkevich J., Stevenson P. C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society. 1951;11: 55–75. https://doi.org/10.1039/DF9511100055

Sheik-Bahae M., Hutchings D. C., Hagan D. J., Van Stryland E. W. Dispersion of bound electron nonlinear refraction in solids. IEEE Journal of Quantum Electronics. 1991;27: 1296–1309. https://doi.org/10.1109/3.89946

Chang Q., Gao Y., Liu X., Chang C. Nonlinear properties of water-soluble Ag2S and PbS quantum dots under picosecond laser pulses. IOP Conference Series: Earth and Environmental Science. 2018;186: 012076. https://doi.org/10.1088/1755-1315/186/4/012076

Yan D., Shi T., Zang Z., Zhao S., Du J., Leng Y. Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere. Chemical Engineering Journal. 2020;401: 126066. https://doi.org/10.1016/j.cej.2020.126066

Liu X., Guo S., Wang H., Hou L. Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption. Optics Communications. 2001;197(4-6): 431–437. https://doi.org/10.1016/s0030-4018(01)01406-7

Zvyagin A. I., Chevychelova T. A., Grevtseva I. G., … Ganeev R. A. Nonlinear refraction in colloidal silver sulfide quantum dots. Journal of Russian Laser Research. 2020;41; 670–80. https://doi.org/10.1007/s10946-020-09923-4

Falconieri M, Salvetti G. Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2. Applied Physics B. 1999;69; 133. https://doi.org/10.1007/s003400050785

Zvyagin A. I., Chevychelova T. A., Chirkov K. S., Smirnov M. S., Ovchinnikov O. V. Size dependence of nonlinear optical properties of PbS QDs, passivated with thioglycolic acid. Optik. 2023;272, 170276. https://doi.org/10.1016/j.ijleo.2022.170276

Mary K. A. A., Unnikrishnan N. V., Philip R. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots. APL Materials. 2014;2; 076104. https://doi.org/10.1063/1.4886276

Skurlov I. D., Ponomareva E. A., Ismagilov A. O., … Litvin A. P. Size dependence of the resonant third-Oorder nonlinear refraction of colloidal PBS quantum dots. Photonics. 2020;7; 39. https://doi.org/10.3390/photonics7020039

Rusinov A. P., Kucherenk M. G. Nonlinear absorption of methylene blue solutions in the presence of plasma nanoparticles with various surface charge. Optics and Spectroscopy. 2020;128(9): 1492-1499. https://doi.org/10.1134/S0030400X20090179

Published
2024-07-12
How to Cite
Zvyagin, A. I., Chevychelova, T. A., Smirnov, M. S., Ovchinnikov, O. V., & Latyshev, A. N. (2024). Formation of hybrid nanostructures based on Zn0.5Cd0.5S quantum dots and silver nanoparticles for nonlinear optical applications in the near ultraviolet. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(3), 431-439. https://doi.org/10.17308/kcmf.2024.26/12218
Section
Original articles