Формирование гибридных наноструктур на основе квантовых точек Zn0.5Cd0.5S и наночастиц серебра для нелинейно-оптических приложений в ближнем ультрафиолете
Аннотация
Целью данной работы является установление оптимальных условий формирования гибридных наноструктур на основе квантовых точек и наночастиц металлов, имеющих нелинейно-оптический отклик в ближнем ультрафиолете. Актуальность данной работы подтверждается необходимостью создания пассивных устройств управления параметрами лазерного излучения в присутствии полупроводниковых коллоидных квантовых точек (КТ) и плазмонных наночастиц (НЧ). Методом Z-сканирования установлены проявления взаимодействия в нелинейно-оптическом отклике КТ Zn0.5Cd0.5S и сферических НЧ Ag (10 нм) в поле лазерных импульсов 10 наносекундной длитель-
ности на длине волны зондирующего излучения 355 нм. Проявления формирования гибридных наноструктур установлены методами просвечивающей электронной микроскопии и оптической спектроскопии поглощения и люминесценции. Взаимодействие коллоидных КТ и НЧ проявляется в тушении рекомбинационной люминесценции первых с пиком на длине волны 450–480 нм. Для ансамблей коллоидных КТ Zn0.5Cd0.5S средним размером (2.0, 2.2, 2.4 нм) установлена нелинейная рефракция (дефокусировка) 10 нс лазерных импульсов в ближнем ультрафиолете (355 нм), коэффициент которой увеличивался с ростом КТ. Установлено, что при взаимодействии КТ Zn0.5Cd0.5S с
НЧ Ag наблюдается подавление нелинейной рефракции на фоне двенадцатикратного усиления коэффициента нелинейного поглощения. Сделано заключение о том, что наиболее вероятной причиной наблюдаемых изменений нелинейно-оптического отклика является поляризующее действие плазмонных НЧ Ag
Скачивания
Литература
Cao E., Lin W., Sun M., Liang W., Song Yi. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics. 2018;7(1): 145–167. https://doi.org/10.1515/nanoph-2017-0059
Hu S., Ren Y., Wang Y., … Tang Y. Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots. Beilstein Journal of Nanotechnology. 2019;10: 22–31. https://doi.org/10.3762/bjnano.10.3
Zvyagin A. I., Perepelitsa A. S., Ovchinnikov O. V., Smirnov M. S., Ganeev R. A. Nonlinear optical properties of associates of erythrosine molecules and gold nanoparticles. Materials Research Express. 2019;6: 1150c8. https://doi.org/10.1088/2053-1591/ab4e2a
Ovchinnikov O. V., Smirnov M. S., Chevychelova T. A., Zvyagin A. I., Selyukov A. S. Nonlinear absorption enhancement of Methylene Blue in the presence of Au/SiO2 core/shell nanoparticles. Dyes and Pigments. 2022;197: 109829. https://doi.org/10.1016/j.dyepig.2021.109829
Zvyagin A. I., Chevychelova T. A., Perepelitsa A. S., Smirnov M. S., Ovchinnikov O. V. Formation of plasmon-exciton nanostructures based on quantum dots and metal nanoparticles with a nonlinear optical response. Condensed Matter and Interphases. 2023;25(3): 350–358. https://doi.org/10.17308/kcmf.2023.25/11258
Davoodi F., Talebi N. Plasmon-exciton interactions in nanometer-thick gold-WSe2 multilayer structures: implications for photodetectors, sensors, and light-emitting devices. ACS Applied Nano Materials. 2021;4(6): 6067–6074. https://doi.org/10.1021/acsanm.1c00889
Grevtseva I. G., Chevychelova T. A., Derepko V. N., … Parshina A. S. Spectral manifestations of the exciton-plasmon interaction of Ag2S quantum dots with silver and gold nanoparticles. Condensed Matter and Interphases.2021;23(1), 25–31. https://doi.org/10.17308/kcmf.2021.23/3294
Daniel M. C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-re-lated roperties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews. 2004;104(1): 293–346. https://doi.org/10.1021/cr030698+
Komarala V. K., Rakovich Yu. P., Bradley A. L. Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Applied Physics Letters. 2006;89 (25): 253118. https://doi.org/10.1063/1.2422906
Ke L., Katsnelson M. I. Electron correlation effects on exchange interactions and spin excitations in 2D van der Waals materials. Npj Computational Materials. 2021;7(4): 1–8. https://doi.org/10.1038/s41524-020-00469-2
De Vera P., Abril I., Garcia-Molina R. Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks. Physical Chemistry Chemical Physics. 2021;23: 5079–5095. https://doi.org/10.1039/d0cp04951d
Yadav R. K., Aneesh J., Sharma R., … Adarsh K. V. Designing hybrids of graphene oxide and gold nanoparticles for nonlinear optical response. Physical Revied Applied. 2008;9(4): 044043(10). https://doi.org/10.1103/PhysRevApplied.9.044043
Kholmicheva N., Royo Romero L., Cassidy J., Zamkov M. Prospects and applications of plasmon-exciton interactions in the near-field regime. Nanophotonics. 2019;8(4): 613–628. https://doi.org/10.1515/nanoph-2018-0143
Danilov V. V., Panfutova A. S., Khrebtov A. I., Ambrosini S., Videnichev D. A. Optical limiting as result a of photoinduced electron transfer in hybrid systems with CdSe/ZnS quantum dots, C60, and Perylene. Optics Letters. 2012;37(19): 3948–3950. https://doi.org/10.1364/OL.37.003948
Khurgin J. B., Sun G. Plasmonic enhancement of the third order nonlinear optical phenomena: Figures of merit. Optics Express. 2013;21; 27460. https://doi.org/10.1364/oe.21.027460
Kauranen M., Zayats A. V. Nonlinear plasmonics. Nature Photonics. 2012;6; 737–748. https://doi.org/10.1038/nphoton.2012.244
Zhang F., Xiao X., Lu Y-P., Dong J., Chen Y. Broadband enhancement of optical nonlinearity in a Pplasmonic nanocavity coupled with an epsilon-near-zero film. The Journal of Physical Chemistry C. 2023;127; 3726–3732. https://doi.org/10.1021/acs.jpcc.2c07796.
Wang J., Gao M., He Y., Yang Z. Ultrasensitive and ultrafast nonlinear optical characterization of surface plasmons. APL Materials. 2022;10; 030701. https://doi.org/10.1063/5.0083239
Cox J. D., Singh M. R., Von Bilderling C., Bragas A. V. A nonlinear switching mechanism in quantum dot and metallic nanoparticle hybrid systems. Advanced Optical Materials. 2013;1; 460–467. https://doi.org/10.1002/adom.201300105
Milanchian K., Tajalli H., Gilani A. G., Zakerhamidi M. S. Nonlinear optical properties of two oxazine dyes in aqueous solution and polyacrylamide hydrogel using single beam Z-scan. Optical Materials. 2009;32; 12–17. https://doi.org/10.1016/j.optmat.2009.05.011
Delaire J. A., Nakatani K. Linear and nonlinear optical properties of photochromic molecules and materials. Chemical Reviews. 2000;100; 1817–1846. https://doi.org/10.1021/cr980078m
Albert I. D. L., Marks T. J., Ratner M. A. Rational design of molecules with large hyperpolarizabilities. Electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties. The Journal of Physical Chemistry. 1996;100; 9714–9725. https://doi.org/10.1021/jp960860v
Parida M. R., Vijayan C., Rout C. S., Sandeep C. S. S., Philip R. Enhanced optical nonlinearity in b‑AgVO3 nanobelts on decoration with Ag nanoparticles. Applied Physics Letters. 2012;100; 121119. https://doi.org/10.1063/1.3696301
Sreekumar G., Fröbel P., Sreeja S., … Mukharjee C. Nonlinear absorption and photoluminescence emission in nanocomposite films of Fuchsine Basic dye–polymer system. Chemical Physics Letters. 2011;506; 61–65. https://doi.org/10.1016/j.cplett.2011.02.048
Sengupta D., Das P., Mondal B. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application – a review. Renewable & Sustainable Energy Reviews. 2016;60; 356–376. https://doi.org/10.1016/j.rser.2016.01.104
Mathew S., Yella A., Gao P., … Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry. 2014;6; 242–247. https://doi.org/10.1038/nchem.1861
Tam F., Goodrich G. P., Johnson B. R., Halas N. J. Plasmonic enhancement of molecular fluorescence. Nano Letters. 2007;7; 496–501. https://doi.org/10.1021/nl062901x
Edappadikkunnummal S., Nherakkayyil S. N., Kuttippurath V., Chalil D. M., Desai N., Keloth C. Surface plasmon assisted enhancement in the nonlinear optical properties of phenothiazine by gold nanoparticle. The Journal of Physical Chemistry C. 2017;121; 26976–26986. https://doi.org/10.1021/acs.jpcc.7b06528
Francis J., Purayil N. P., Edappadikkunnummal S., Chandrasekharan K., Sangeeth C. S. S. Impact of photoinduced energy transfer and LSPR of Au and Ag nanoparticles on nonlinear optical response of methyl orange. Journal of Molecular Liquids. 2023;390; 123048. https://doi.org/10.1016/j.molliq.2023.123048
Turkevich J., Stevenson P. C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society. 1951;11: 55–75. https://doi.org/10.1039/DF9511100055
Sheik-Bahae M., Hutchings D. C., Hagan D. J., Van Stryland E. W. Dispersion of bound electron nonlinear refraction in solids. IEEE Journal of Quantum Electronics. 1991;27: 1296–1309. https://doi.org/10.1109/3.89946
Chang Q., Gao Y., Liu X., Chang C. Nonlinear properties of water-soluble Ag2S and PbS quantum dots under picosecond laser pulses. IOP Conference Series: Earth and Environmental Science. 2018;186: 012076. https://doi.org/10.1088/1755-1315/186/4/012076
Yan D., Shi T., Zang Z., Zhao S., Du J., Leng Y. Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere. Chemical Engineering Journal. 2020;401: 126066. https://doi.org/10.1016/j.cej.2020.126066
Liu X., Guo S., Wang H., Hou L. Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption. Optics Communications. 2001;197(4-6): 431–437. https://doi.org/10.1016/s0030-4018(01)01406-7
Zvyagin A. I., Chevychelova T. A., Grevtseva I. G., … Ganeev R. A. Nonlinear refraction in colloidal silver sulfide quantum dots. Journal of Russian Laser Research. 2020;41; 670–80. https://doi.org/10.1007/s10946-020-09923-4
Falconieri M, Salvetti G. Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2. Applied Physics B. 1999;69; 133. https://doi.org/10.1007/s003400050785
Zvyagin A. I., Chevychelova T. A., Chirkov K. S., Smirnov M. S., Ovchinnikov O. V. Size dependence of nonlinear optical properties of PbS QDs, passivated with thioglycolic acid. Optik. 2023;272, 170276. https://doi.org/10.1016/j.ijleo.2022.170276
Mary K. A. A., Unnikrishnan N. V., Philip R. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots. APL Materials. 2014;2; 076104. https://doi.org/10.1063/1.4886276
Skurlov I. D., Ponomareva E. A., Ismagilov A. O., … Litvin A. P. Size dependence of the resonant third-Oorder nonlinear refraction of colloidal PBS quantum dots. Photonics. 2020;7; 39. https://doi.org/10.3390/photonics7020039
Rusinov A. P., Kucherenk M. G. Nonlinear absorption of methylene blue solutions in the presence of plasma nanoparticles with various surface charge. Optics and Spectroscopy. 2020;128(9): 1492-1499. https://doi.org/10.1134/S0030400X20090179
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.