Synthesis and luminescent properties of PbS/SiO2 core-shell quantum dots
Abstract
The research focuses on the development of techniques for creating core-shell structures, based on colloidal PbS quantum dots (PbS QDs) and establishing the influence of the dielectric SiO2 shell on the luminescent properties of PbS QDs. The objects of the study were PbS QDs with an average size of 3.0±0.5 nm, passivated with thioglycolic acid (TGA) and PbS/SiO2 QDs, based on them with an average size of 6.0±0.5 nm. When we passivated the PbS QD interfaces with thioglycolic acid molecules, there were two luminescence peaks at 1100 and at 1260 nm. It was found that increasing the temperature of the colloidal mixture to 60 °C provides an increase in the intensity of the long-wave peak. An analysis of the luminescence excitation spectra of both bands and the Stokes shift showed that the band at 1100 nm is associated with the radiative
annihilation of an exciton, while the band at 1260 nm is due to recombination at trap levels. The formation of PbS/SiO2 QDs suppresses trap state luminescence, indicating the localization of luminescence centers predominantly at QD interfaces. The exciton luminescence at 1100 nm becomes more intensive
Downloads
References
Hafiz S. B., Scimeca M., Sahu A., Ko D.-K. Colloidal quantum dots for thermal infrared sensing and imaging. Nano Convergence. 2019;6(7). https://doi.org/10.1186/s40580-019-0178-1
Sergeev A. A., Pavlov D. V., Kuchmizhak A. A., … Rogach A. L. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light: Science and Applications. 2020;9(16). https://doi.org/10.1038/s41377-020-0247-6
Reineck P., Gibson B. C. Near-infrared fluorescent nanomaterials for bioimaging and sensing. Advanced Optical Materials. 2017;5: 1600446. https://doi.org/10.1002/adom.201600446
Gu Yi.-P., Cui R., Zhang Z.-L., Xie Z.-X., Pang D.‑W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. Journal of the American Chemical Society. 2012;134(1): 79–82. https://doi.org/10.1021/ja2089553
Xu S., Cui J., Wang L. Recent developments of low-toxicity NIR II quantum dots for sensing and bioimaging. rAC Trends in Analytical Chemistry. 2016;80: 149–155. https://doi.org/10.1016/j.trac.2015.07.017
Zaini M. S., Liew J. Y. Ch., Ahmad S. A. A., Mohmad A. R., Kamarudin M. A. Quantum confinement effect and photoenhancement of photoluminescence of PbS and PbS/MnS quantum dots. Applied Sciences. 2020;10(18): 6282. https://doi.org/10.3390/app10186282
Tan L., Wan A., Zhao T., Huang R., Li H. Aqueous synthesis of multidentate-polymer-capping Ag2Se quantum dots with bright photoluminescence tunable in a second near-infrared biological window. ACS Applied Materials and Interfaces. 2014;6(9): 6217–6222. https://doi.org/10.1021/am5015088
Keuleyan S., Lhuillier E., Guyot-Sionnest P. Synthesis of colloidal HgTe quantum dots for narrow Mid-IR emission and detection. Journal of the American Chemical Society. 2011;133(41): 16422–16424. https://doi.org/10.1021/ja2079509
Yu Y., Zhang K., Sun S. One-pot aqueous synthesis of near infrared emitting PbS quantum dots. Applied Surface Science. 2012;258(18): 7181–7187. https://doi.org/10.1016/j.apsusc.2012.04.031
Qian H., Dong C., Peng J., Qiu X., Xu Y., Ren J. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition. The Journal of Physical Chemistry C. 2007;111(45): 16852–16857. https://doi.org/10.1021/jp074961c
Capoen B., Martucci A., Turrell S., Bouazaoui M. Effects of the sol-gel solution host on the chemical and optical properties of PbS quantum dots. Journal of Molecular Structure. 2003;651-653: 467–473. https://doi.org/10.1016/S0022-2860(02)00667-1
Yin Q., Zhang W., Zhou Y., Wang R., Zhao Z., Liu C. High efficiency luminescence from PbS quantum dots embedded glasses for near-infrared light emitting diodes. Journal of Luminescence. 2022;250: 119065. https://doi.org/10.1016/j.jlumin.2022.119065
Srivastava R .R., Mishra H., Singh V. K., Vikram K., Srivastava R. K., Srivastava S. K., Srivastava A. pH dependent luminescence switching of tin disulfide quantum dots. Journal of Luminescence. 2019;213: 401–408. https://doi.org/10.1016/j.jlumin.2019.05.024
Zvyagin A. I., Chevychelova T. A., Chirkov K. S., Smirnov M. S., Ovchinnikov O. V. Size dependence of nonlinear optical properties of PbS QDs, passivated with thioglycolic acid. Optik. 2023;272: 170276. https://doi.org/10.1016/j.ijleo.2022.170276
Grevtseva I., Chevychelova T., Ovchinnikov O., … Chirkov K. Size effect features and mechanism of luminescence of colloidal PbS quantum dots, passivated with thioglicolic acid. Optical and Quantum Electronics. 2023;55(5): 433. https://doi.org/10.1007/s11082-023-04658-3
Grevtseva I. G., Ovchinnikov O. V., Smirnov M. S. Chirkov K. S. Trap state and exciton luminescence of colloidal PbS quantum dots coated with thioglycolic acid molecules. Condensed Matter and Interphases. 25(2), 182–189. https://doi.org/10.17308/kcmf.2023.25/11099
Grevtseva I. G., Ovchinnikov O. V., Smirnov M. S., … Vozgorkova. Photostability of luminescence of Ag2S quantum dots and Ag2S/SiO2 core/shell structure. Optics and Spectroscopy. 2022;130(12): 1634–1644. https://doi.org/10.21883/os.2022.12.54100.4106-22
Smirnov M. S., Ovchinnikov O. V., Grevtseva I. G., Zvyagin A. I ., Perepelitsa A. S ., Ganeev R. A . Photoinduced degradation of the optical properties of colloidal Ag2S and CdS quantum dots passivated by thioglycolic acid. Optics and Spectroscopy. 2018;124(5): 681–686. https://doi.org/10.1134/S0030400X18050211
Ovchinnikov O. V., Grevtseva I. G., Smirnov M. S., … Matsukovich A. S. Effect of thioglycolic acid molecules on luminescence properties of Ag2S quantum dots. Optical and Quantum Electronics. 2020;52(4): 198. https://doi.org/10.1007/s11082-020-02314-8
Ovchinnikov O. V., Grevtseva I. G., Smirnov M. S., Kondratenko T. S. Reverse photodegradation of infrared luminescence of colloidal Ag2S quantum dots. Journal of Luminescence. 2019;207: 626–632. https://doi.org/10.1016/j.jlumin.2018.12.019
Kondratenko T., Ovchinnikov O., Grevtseva I., … Tatianina E. Thioglycolic acid FTIR spectra on Ag2S quantum dots interfaces. Materials. 2020;13(4): 909. https://doi.org/10.3390/ma13040909
Kloepfer J. A., Bradforth S. E., Nadeau J. L. Photophysical properties of biologically compatible CdSe quantum dot structures. The Journal of Physical Chemistry B. 2005;109(20): 9996–10003. https://doi.org/10.1021/jp044581g
Krivenkov V. A., Samokhvalov P. S., Linkov P. A., … Nabiev I. Surface ligands affect photoinduced modulation of the quantum dots optical performance. SPIE Proceedings. 2014;9126: 91263. https://doi.org/10.1117/12.2057828
Hwang G. W., Kim D., Cordero J. M., … Bawendi M. G. Identifying and eliminating emissive sub-bandgap states in thin films of PbS nanocrystals. Advanced Materials. 2015;27: 4481–4486. https://doi.org/10.1002/adma.201501156
Nelson C. A., Zhu X.-Y. Reversible surface electronic traps in PbS quantum dot solids induced by an order disorder phase transition in capping molecules. Journal of the American Chemical Society. 2012;134(18): 7592–7595. https://doi.org/10.1021/ja3004649
Scanlon W. W. Recent advances in the optical and electronic properties of PbS, PbSe, PbTe and their alloys. Journal of Physics and Chemistry of Solids. 1959;8: 423–428. https://doi.org/10.1016/0022-3697(59)90379-8
Wang D., Qian J., Cai F., He S., Han S., Mu Y. ‘Green’-synthesized near-infrared PbS quantum dots with silica–PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging. Nanotechnology. 2012;23: 245701. https://doi.org/10.1088/0957-4484/23/24/245701
Zhang J., Jiang X. Confinement-dependent below-gap state in PbS quantum dot films probed by continuous-wave photoinduced absorption. The Journal of Physical Chemistry B. 2008;112:32: 9557– 9560. https://doi.org/10.1021/jp8047295
Ushakova E. V., Litvin A. P., Parfenov P. S., … Baranov A. V. Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution. ACS Nano. 2012;6(10): 8913–8921. https://doi.org/10.1021/nn3029106
Voznyy O., Levina L., Fan F., … Sargent E. H. Origins of Stokes shift in PbS nanocrystals. Nano Letters. 2017;17(12): 7191–7195. https://doi.org/10.1021/acs.nanolett.7b01843
Lewis J. E., Jiang X. J. Unconventional gap state of trapped exciton in lead sulfide quantum dots. Nanotechnology. 2010;21: 455402. https://doi.org/10.1088/0957-4484/21/45/455402
Gaponenko M. S., Tolstik N. A., Lutich A. A., Onushchenko A. A., Yumashev K. V. Temperaturedependent photoluminescence Stokes shift in PbS quantum dots. Physica E: Low-dimensional Systems and Nanostructures. 2013;53: 63–65. https://doi.org/10.1016/j.physe.2013.04.018
Nakashima S., Hoshino A., Cai J., Mukai K. Thiol-stabilized PbS quantum dots with stable luminescence in the infrared spectral range. Journal of Crystal Growth. 2013;378: 542–545. http://dx.doi.org/10.1016/j.jcrysgro.2012.11.024
Moreels I. Lambert K., Smeets D., … Hens Z. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano. 2009;3(10): 3023–3030. https://doi.org/10.1021/nn900863a
Giansante C., Infante I. Surface traps in colloidal quantum dots: A combined experimental and theoretical erspective. The Journal of Physical Chemistry Letters. 2017;8(20): 5209–5215 https://doi.org/10.1021/acs.jpclett.7b02193
Ovchinnikov O. V. , Perepelitsa A. S. , Smirnov M. S., Aslanov S. V. Control the shallow trap states concentration during the formation of luminescent Ag2S and Ag2S/SiO2 core/shell quantum dots. Journal of Luminescence. 2022;243: 118616. https://doi.org/10.1016/j.jlumin.2021.118616
Vasudevan D., Gaddam R. R., Trinchi A., Cole I. Core–shell quantum dots: Properties and applications. Journal of Alloys and Compounds. 2015;636(5): 395–404. https://doi.org/10.1016/j.jallcom.2015.02.102
Perepelitsa A. S. , Ovchinnikov O. V. , Smirnov M. S., … Khokhlov V. Y. Structural and optical properties of Ag2S/SiO2 core/shell quantum dots. Journal of Luminescence. 2021;231: 117805. https://doi.org/10.1016/j.jlumin.2020.117805
Mukai K., Okumura I., Nishizaki Y., Yamashita S., Niwa K. Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate. Japanese Journal of Applied Physics. 2018;57: 04FH01. https://doi.org/10.7567/JJAP.57.04FH01
Capoen B., Martucci A., Turrell S., Bouazaoui M. Effects of the sol-gel solution host on the chemical and optical properties of PbS quantum dots. Journal of Molecular Structure. 2023;651-653: 467–473. https://doi.org/10.1016/S0022-2860(02)00667-1
Dhlamini M. S., Terblans J. J., Ntwaeaborwa O. M., Joubert H. D., Swart H. C. Preparations and luminescent properties of PbS nanoparticle phosphors incorporated in a SiO2 matrix. Physica Status Solidi C. 2008;5(2): 598–601. https://doi.org/10.1002/pssc.200776808
Kedenburg S., Vieweg M., Gissibl T., Giessen H. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and nearinfrared spectral region. Optical Materials Express. 2012;2(11): 1588–1611. https://doi.org/10.1364/ome.2.001588
van Leeuwen F. W .B., Cornelissen B., Caobelli F., … de Jong M. Generation of fluorescently labeled tracers – which features influence the translational potential? EJNMMI Radiopharmacy and Chemistry. 2017;2(15). https://doi.org/10.1186/s41181-017-0034-8
Kozma I. Z., Krok P., Riedle E. Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. Journal of the Optical Society of America B. 2005;22(7): 1479–1485. https://doi.org/10.1364/JOSAB.22.001479
Sadovnikov S. I., Kozhevnikova N. S., Rempel A. A., Pushin V. G. Microstructure of nanocrystalline PbS powders and films. Inorganic Materials. 2012;48(1): 21–27. https://doi.org/10.1134/S002016851201013X
Music S., Filipovic-Vincekovic N., Sekovanic L. Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering. 2011;28(1): 89–94. https://doi.org/10.1590/S0104-6322011000100011
Zhong Q., Cao M., Hu H., … Zhang Q., One-pot synthesis of highly stable CsPbBr3@SiO2 core–shell nanoparticles. ACS Nano. 2018;12(8): 8579–8587. https://doi.org/10.1021/acsnano.8b04209
Li B., Fan H., Zhao Q., Wang C. Synthesis, characterization and cytotoxicity of novel multifunctional Fe3O4@SiO2@GdVO4:Dy3+ core-shell nanocomposite as a drug carrier. Materials. 2016;9(3): 149. https://doi.org/10.3390/ma9030149
Gilmore R. H., Liu Y., Shcherbakov-Wu W., … Tisdale W. A. Epitaxial dimers and auger-assisted detrapping in PbS quantum dot solids. Matter. 2019;1(1): 250–265. https://doi.org/10.1016/j.matt.2019.05.015
Sadovnikov S. I., Rempel A. A. Nonstoichiometric distribution of sulfur atoms in lead sulfide structure. Doklady Physical Chemistry. 2009;428(1): 167–171. https://doi.org/10.1134/S0012501609090024
Ovchinnikov O. V., Smirnov M. S., Korolev N. V., Golovinski P. A., Vitukhnovsky A. G. The size dependence recombination luminescence of hydrophilic colloidal CdS quantum dots in gelatin. Journal of Luminescence. 2016;179: 413–419. https://doi.org/10.1016/j.jlumin.2016.07.016
Wang Y., Suna A., Mahler W., Kasowski R. PbS in polymers. From molecules to bulk solids. The Journal of Chemical Physics. 1987;87: 7315–7322. https://doi.org/10.1063/1.453325
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.