Фотоэлектрический отклик в сэндвич-структурах на основе конденсированных слоев квантовых точек Ag2S, пассивированных тиогликолевой кислотой
Аннотация
Исследование направлено на разработку методики формирования структур с барьером Шоттки в виде многослойной сэндвич-структуры Al-Ag2S-ITO, в состав которой в качестве фоточувствительного элемента входит конденсат коллоидных квантовых точек Ag2S, пассивированных молекулами тиогликолевой кислоты (КТ Ag2S/TGA).
Спектральные свойства исследовали с помощью спектрометра USB2000+ (Ocean Optics, USA) с источником излучения USB-DT (Ocean Optics, USA). Электрофизические и фотоэлектрические свойства исследуемых структур измерялись анализатором полупроводников Keysight B1500A (Keysight Technologies, США). Исследование температурных зависимостей этих свойств в диапазоне от 300 до 360 К реализовано в экранированной камере (клетка Фарадея), помещенной в муфельную печь.
Установлено, что проводимость структуры Al-Ag2S-ITO преимущественно определяется барьером Шоттки на границе Al-плёнка конденсата КТ Ag2S. На границе раздела плёнка конденсата КТ Ag2S-Al найдены признаки образования выпрямляющего контакта.
Под действием оптического излучения с длиной волны 650 нм и менее, соответствующей наиболее вероятному экситонному переходу в оптическом поглощении света КТ Ag2S/TGA для отрицательной ветви ВАХ, найдено увеличение тока.
Скачивания
Литература
Alharthi S. S., Alzahrani A., Razvi M. A. N., Badawi A., Althobaiti M. G. Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30: 3878–3885. https://doi.org/10.1007/s10904-020-01519-4
Chand S., Sharma E., Sharma P. Phase change induced quantization in NIR emitting Ag2S nanocrystals: Structural and optical response for solar energy applications. Journal of Alloys and Compounds V. 2019;770: 1173–1180. https://doi.org/10.1016/j.jallcom.2018.08.133
Cotta M. A. Quantum dots and their applications: what lies ahead? ACS Applied Nano Materials. 2020;3(6): 4920–4924. https://doi.org/10.1021/acsanm.0c01386
Lei Y., Xu S., Ding M., Li L., Sun Q., Wang Z. L. Enhanced photocatalysis by synergistic piezotronic effect and exciton–plasmon interaction based on (Ag-Ag2S)/BaTiO3 heterostructures. Advanced Functional Materials. 2020;30(51): 2005716. https://doi.org/10.1002/adfm.202005716
Gao H., Wang F., Wang S., Wang X., Yi Z., Yang H. Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: Synthesis and photocatalytic mechanism. Materials Research Bulletin. 2019;115: 140–149. https://doi.org/10.1016/j.materresbull.2019.03.021
Tretyakov I., Svyatodukh S., Perepelitsa A., … Goltsman G. Ag2S QDs/Si Heterostructure-Based Ultrasensitive SWIR Range Detector. Nanomaterials. 2020; 10(5): 861. https://doi.org/10.3390/nano10050861
Smirnov M. S., Ovchinnikov O. V. IR luminescence mechanism in colloidal Ag2S quantum dots. Journal of Luminescence. 2020; 227: 117526. https://doi.org/10.1016/j.jlumin.2020.117526
Mir W. J., Swarnkar A., Sharma R., Katti A., Adarsh K. V., Nag A. Origin of unusual excitonic absorption and emission from colloidal Ag2S nanocrystals: ultrafast photophysics and solar cell. The Journal of Physical Chemistry Letters. 2015;6: 3915−3922. https://doi.org/10.1021/acs.jpclett.5b01692
Ruiz D., del Rosal B., Acebron M., … Juarez B. H. Ag/Ag2S Nanocrystals for high Sensitivity near-infrared luminescence nanothermometry. Advanced Functional Materials. 2016;27: 1604629. https://doi.org/10.1002/adfm.201604629
Zamiri R., Abbastabar Ahangar H., Zakaria A., Zamiri G., Shabani M., Singh B., Ferreira J. M. F. The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared. Chemistry Central Journal. 2015;9(1): 1–6. https://doi.org/10.1186/s13065-015-0099-y
Lesnyak V., Gaponik N., Eychmüller A. Colloidal semiconductor nanocrystals: the aqueous approach. Chemical Society. Reviews. 2013;42: 2905–2929. https://doi.org/10.1039/c2cs35285k
Gilmore R. H., Liu Y., Shcherbakov-Wu W., … Tisdale W. A. Epitaxial dimers and Auger-assisted detrapping in PbS quantum dot. Solids Matter. 2019;1: 250–265. https://doi.org/10.1016/j.matt.2019.05.015
Zhang Y., Xia J., Li C., … Li Q. Near-infrared-emitting colloidal Ag2S quantum dots excited by an 808 nm diode laser. Journal of Materials Science. 2017;52(16): 9424–9429. https://doi.org/10.1007/s10853-017-1131-5
Kondratenko T. S., Zvyagin A. I., Smirnov M. S., Grevtseva I. G., Perepelitsa A. S., Ovchinnikov O. V. Luminescence and nonlinear optical properties of colloidal Ag2S quantum dots. Journal of Luminescence. 2019;208: 193–200. https://doi.org/10.1016/j.jlumin.2018.12.042
Wu Q., Zhou M., Shi J., Li Q., Yang M., Zhang Z. Synthesis of water-soluble Ag2S Quantum dots with fluorescence in the second Near-Infrared window for turn-on detection of Zn(II) and Cd(II). Analytical Chemistry. 2017;89(12): 6616–6623. https://doi.org/10.1021/acs.analchem.7b00777
Ovchinnikov O. V., Grevtseva I. G., Smirnov M. S., … Matsukovich A.S. Effect of thioglycolic acid molecules on luminescence properties of Ag2S quantum dots. Optical and Quantum Electronics. 2020;52: 198-1-23. https://doi.org/10.1007/s11082-020-02314-8
Kondratenko T., Ovchinnikov O., Grevtseva I., … Tatianina E. Thioglycolic acid FTIR spectra on Ag2S quantum dots interfaces. Materials. 2020;13: 909-1-15. https://doi.org/10.3390/ma13040909
Vardara D. O., Aydin S., Hocaoglu I., Acar F. H. Y., Basaran N. Effects of silver sulfide quantum dots coated with 2-mercaptopropionic acid on genotoxic and apoptotic pathways in vitro. Chemico-Biological Interactions. 2018;291: 212–219. https://doi.org/10.1016/j.cbi.2018.06.032
Jiang P., Wang R., Chen Z. Thiol-based non-injection synthesis of near-infrared Ag2S/ZnS core/shell quantum dots. RSC Advances. 2015;5: 56789–56793. https://doi.org/10.1039/C5RA08008H
Duman F.D ., Erkisa M., Khodadust R., Ari F., Ulukaya E., Acar H. Y. Folic acid-conjugated cationic Ag2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine (Lond). 2017;12(19): 2319–2333. https://doi.org/10.2217/nnm-2017-0180
Liu Q., Pu Y., Zhao Z., Wang J., Wang D. Synthesis of silver sulfide quantum dots via the liquid–liquid interface reaction in a rotating packed bed reactor. Transactions of Tianjin University. 2020;26: 273–282. https://doi.org/10.1007/s12209-019-00228-5
Ovchinnikov O. V., Aslanov S. V., Smirnov M. S., Grevtseva I. G., Perepelitsa A. S. Photostimulated control of luminescence quantum yield for colloidal Ag2S/2-MPA quantum dots. RSC Advances. 2019;9: 37312–37320. https://doi.org/10.1039/C9RA07047H
Borovaya M., Horiunova I., Plokhovska S., Pushkarova N., Blume Y., Yemets A. Synthesis, properties and bioimaging applications of silver-based quantum dots. International Journal of Molecular Sciences. 2021;22: 12202 (1-23). https://doi.org/10.3390/ijms222212202
Tang R., Xu B., Shen D., Sudlow G., Achilefu S. Ultrasmall visible-to-near-infrared emitting silver-sulfide quantum dots for cancer detection and imaging. ACS Nano. 2015;9(1): 220–230. https://doi.org/10.1021/nn5071183
Ding C., Huang Y., Shen Z., Chen X. Synthesis and bioapplications of Ag2S quantum dots with Near-Infrared fluorescence. Advanced Materials. 2021;33: 2007768. https://doi.org/10.1002/adma.202007768
Ovchinnikov O., Aslanov S., … Grevtseva I. Colloidal Ag2S/SiO2 core/shell quantum dots with IR luminescence. Optical Materials Express. 2021;11(1): 89–104. https://doi.org/10.1364/OME.411432
Kang M. H., Kim S. H., Jang S., … Park J. K. Synthesis of silver sulfide nanoparticles and their photodetector applications. RSC Advances. 2018;8(50): 28447–28452. https://doi.org/10.1039/C8RA03306D
Feng J., Li X., Shi Z., … Zhu L. 2D ductile transition metal chalcogenides (TMCs): novel high-per-formance Ag2S anosheets for ultrafast photonics. Advanced Optical Materials. 2019;8(6): 1901762. https://doi.org/10.1002/adom.201901762
Badali Y., Azizian-Kalandaragh Y., Akhlaghi E. A., Altindal S. Ultrasound-assisted method for preparation of Ag2S nanostructures: fabrication of Au/Ag2S-PVA/n-Si Schottky barrier diode and exploring their electrical properties. Journal of Electronic Materials. 2020;49(1): 444–453. https://doi.org/10.1007/S11664-019-07708-3
Gusev A. N., Mazinov A. S., Shevchenko A. I., Tyutyunik A. S., Gurchenko V. S., Braga E. V. Research of heterojunctions based on the system of fullerene and hydrazine. Applied Physics. 2019;6: 48–53. (In Russ., abstact in Eng.). Available at: https://applphys.orion-ir.ru/appl-19/19-6/PF-19-6-48.pdf
Lin S., Feng Y., Wen X. et. al. Theoretical and experimental investigation of the electronic structure and quantum confinement of wet-chemistry synthesized Ag2S nanocrystals. The Journal of Physical Chemistry C. 2015;119(1): 867–872. https://doi.org/10.1021/jp511054g
Kayanuma Y. Quantum-size effects of interacting electrons and hHoles in semiconductor microcrystals with spherical shape. Physical Review B. 1988;38(14): 9797–9805. https://doi.org/10.1103/PhysRevB.38.9797
Lu X., Li L., Zhang W., Wang C. Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology. 2005;16(10): 2233–2237. https://doi.org/10.1088/0957-4484/16/10/043
Sugiyama K., Ishii H., Ouchi Y., Seki K. Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies. Journal of Applied Physics. 2000; 87(1): 295–298. https://doi.org/10.1063/1.371859
Kim S. Y., Lee J.-L., Kim K.-B., Tak Y.-H. Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes. Journal of Applied Physics. 2004;95(5): 2560–2563. https://doi.org/10.1063/1.1635995
Tubtimtae A., Cheng K.-Y., Lee M.-W. Ag2S quantum dot-sensitized WO3 photoelectrodes for solar cells. Journal of Solid State Electrochemistry. 2014;18: 1627–1633. https://doi.org/10.1007/s10008-014-2385-3
Lide D. R., Weast R. C. CRC handbook of cChemistry and physics. CRC Press, Boca Raton, FL, 1986.
Chen H., Lei Y., YangX., ZhaoC., Zheng Z. Using a CdS under-layer to suppress charge carrier recombination at the Ag2S/FTO interface. Journal of Alloys and Compounds. 2021;879: 160348. https://doi.org/10.1016/j.jallcom.2021.160348
Tyutyunik A. S., Gurchenko V. S., Mazinov A. S. Investigation of temperature dependences of currentvoltage characteristics of hybrid organic materials based on zinc complexes. Applied Physics. 2021;5: 81–87. (In Russ., abstract in Eng.). https://doi.org/10.51368/1996-0948-2021-5-81-87
Lengyel G. Schottky emission and conduction in some organic insulating materials. Journal of Applied Physics. 1966; 37(2): 807-810. https://doi.org/10.1063/1.1708261
Matsumura M., Jinde Y., Akai T., Kimura T. Analysis of current-voltage characteristics of organic electroluminescent devices on the basis of Schottky emission mechanism. Japanese Journal of Applied Physics. 1996;35(11): 5735–5739. https://doi.org/10.1143/jjap.35.5735
Zhu Y. B., Geng K., Cheng Z. S., Yao R. H. Spacecharge-limited current injection into free space and trap-filled solid. IEEE Transactions on Plasma Science. 2021;49(7): 2107–2112. https://doi.org/10.1109/TPS.2021.3084461
Gupta R. K., Ghosh K., Kahol P. K. Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current
Applied Physics. 2009;9(5): 933–936. https://doi.org/10.1016/j.cap.2008.09.007
Dhifaoui H., Aloui W., Bouazizi A. Optical, electrochemical and electrical properties of p-N,Ndimethyl-amino-benzylidene-malononitrile thin films. Materials Research Express. 2020;7(4): 045101. https://doi.org/10.1088/2053-1591/ab7dfb
Gusev A., Braga E., Tyutyunik A., … Linert W. Synthesis, photoluminescence and electrical study of pyrazolone-based azomethine ligand Zn(II) complexes. Materials. 2020;13(24): 5698-1-12. https://doi.org/10.3390/ma13245698
Perepelitsa A. S., Smirnov M. S., Ovchinnikov O. V., Latyshev A. N., Kotko A. S. Thermostimulated luminescence of colloidal Ag2S quantum dots. J. of Luminescence. 2018; 198: 357–363. https://doi.org/10.1016/j.jlumin.2018.02.009
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.