Growth kinetics of anodic oxide layers on cobalt silicides in sulphuric acid solutions

Keywords: Cobalt silicide, Passivity, Oxide film, Growth kinetics, High field model, Point defect model

Abstract

        The aim of this research was to study the growth kinetics of anodic oxide films on cobalt silicides in sulphuric acid solutions under potentiostatic conditions with various pretreatment of the electrode surface. For the study, we used low and high silicon silicides (Co2Si and CoSi2) in 0.05 and 0.5 M H2SO4.
        We obtained the chronoamperograms in the time interval t = 0.3–3000 s with the oxide formation potentials of Ef = 0.2, 0.5, and 1.0 V (SHE). It was determined that the kinetics of the growth of oxide layers on cobalt silicides in acidic solutions greatly depends on the method of the silicide surface pretreatment (mechanical polishing; cathodic pre-polarisation in a H2SO4 solution; exposure to H2SO4 solution at the open circuit potential; exposure in a 2 M KOH solution; and exposure to 2% HF solution). In most cases, at low t (up to 30–50 s), the oxide films grew due to the ion migration in the strong electric field generated in the film during anodic polarisation.
         In some cases (Co2Si silicide with higher cobalt content; pretreatment of Co2Si in alkaline solution, further enriching the silicide surface with cobalt; and the region of high values of t), the point defect model seemed to be executed. 

Downloads

Download data is not yet available.

Author Biographies

Anatoliy B. Shein, Perm State National Research University, 15 Bukireva ul., Perm 614990, Russian Federation

Dr. Sci. (Chem.), Full Professor,
the Department of Physical Chemistry, Perm State
University (Perm, Russian Federation)

Vladimir I. Kichigin, Perm State National Research University, 15 Bukireva ul., Perm 614990, Russian Federation

Cand. Sci. (Chem.), Research
Fellow at the Department of Physical Chemistry, Perm
State University (Perm, Russian Federation)

References

Maurice V., Marcus P. Current developments of nanoscale insight into corrosion protection by passive oxide films. Current Opinion in Solid State and Materials Science. 2018;22(4): 156–167. https://doi.org/10.1016/j.cossms.2018.05.004

Shein A. B. Electrochemistry of silicides and germanides of transition metal*. Perm: Perm State Univ. Publ., 2009. 269 p. (In Russ)

Schmidt C., Strehblow H.-H. The passivity of Fe/Si alloys in aqueous electrolytes at pH 5 and 9 studied by X-ray photoelectron spectroscopy and ion scattering spectroscopy. Journal of the Electrochemical Society. 1998; 145(3):834–840. https://doi.org/10.1149/1.1838353

Strehblow H.-H., Maurice V., Marcus P. Passivity of metals. In: Corrosion Mechanisms in Theory and Practice. P. Marcus (ed.). CRC Press, Taylor & Francis Group; 2012. pp. 235–326.

Wolff U., Schneider F., Mummert K., Schultz L. Stability and electrochemical properties of passive layers on Fe-Si alloys. Corrosion. 2000;56(12): 1195–1201. https://doi.org/10.5006/1.3280507

Chen H., Ma Q., Shao X., Ma J., Huang B. X. Corrosion and microstructure of the metal silicide (Mo1-xNbx)5Si3. Corrosion Science. 2013;70: 152–160. https://doi.org/10.1016/j.corsci.2013.01.024

Tang C., Wen F., Chen H., Liu J., Tao G., Xu N., Xue J. Corrosion characteristics of Fe3Si intermetallic coatings prepared by molten salt infiltration in sulfuric acid solution. Journal of Alloys and Compounds. 2019;778: 972–981. https://doi.org/10.1016/j.jallcom.2018.11.198

Hu L., Hu B., Gui, Y. Study on the melting and corrosion resistance of Fe-Cr-Si dual phase alloy. IOP Conference Series: Materials Science and Engineering. 2020;782(2): 022031. https://doi.org/10.1088/1757-899X/782/2/022031

Zhang Y., Xiao J., Zhang Y., Liu W., Pei W., Zhao A., Zhang W., Zeng, L. The study on corrosion behavior and corrosion resistance of ultralow carbon high silicon iron-based alloy. Materials Research Express. 2021; 8(2): 026504. https://doi.org/10.1088/2053-1591/abdc52

Shadrin K. V., Panteleeva V. V., Shein A. B. Passivation of chromium dicilicide in acidic media. Bulletin of Perm University. Chemistry. 2021;11(3): 202–211 (In Russ., abstract in Eng.). https://doi.org/10.17072/2223-1838-2021-3-202-211

Baklanov M. R., Badmaeva I. A., Donaton R. A., Sveshnikova L. L., Storm W., Maex K. Kinetics and mechanism of the etching of CoSi2 in HF-based solutions. Journal of the Electrochemical Society. 1996; 143(10): 3245–3251. https://doi.org/10.1149/1.1837192

Strehblow H.-H. Passivity of metals. In: Advances in Electrochemical Science and Engineering. Vol. 8. R. C. Alkire (ed.). Wiley; 2002. pp. 271–374. https://doi.org/10.1002/3527600787.ch4

Panteleeva V. V., Shein A. B. Growth of anodic oxide films on iron-triad metal monosilicides in sulfuric acid electrolyte. Russian Journal of Electrochemistry. 2014;50(11): 1036–1043. https://doi.org/10.1134/S102319351411007X

Behazin M., Biesinger M. C., Noël J. J., Wren J. C. Comparative study of film formation on high-purity Co and Stellite-6: Probing the roles of a chromium oxide layer and gamma-radiation. Corrosion Science. 2012; 63: 40–50. https://doi.org/10.1016/j.corsci.2012.05.007

Lutton K., Gusieva K., Ott N., Birbilis N., Scully J. R. Understanding multi-element alloy passivation in acidic solutions using operando methods. Electrochemistry Communications. 2017;80: 44–47. https://doi.org/10.1016/j.elecom.2017.05.015

Lutton Cwalina K., Ha H. M., Ott N., Reinke P., Birbilis N., Scully J. R. In operando analysis of passive film growth on Ni-Cr and Ni-Cr-Mo alloys in chloride solutions. Journal of the Electrochemical Society. 2019; 166(11):C3241–C3253. https://doi.org/10.1149/2.0261911jes

Wang Z., Di-Franco F., Seyeux A., Zanna S., Maurice V. , Marcus P. Passivation-induced physicochemical alterations of the native surface oxide film on 316L austenitic stainless steel. Journal of the Electrochemical Society. 2019;166(11): C3376–C3388. https://doi.org/10.1149/2.0321911jes

Choudhary S., Thomas S., Macdonald D. D., Birbilis N. Growth kinetics of multi-oxide passive film formed upon the multi-principal element alloy AlTiVCr: Effect of transpassive dissolution of V and Cr. Journal of the Electrochemical Society. 2021;168: 051506. https://doi.org/10.1149/1945-7111/ac018

Burstein G. T. Passivity and localized corrosion. In: Corrosion. Vol. 1. Metal/Environment Reactions. L. L. Shreir, R. A. Jarman, G. T. Burstein (eds.). Oxford: Butterworth-Heinemann; 1994. pp. 1:118–1:150. https://doi.org/10.1016/b978-0-08-052351-4.50013-3

Zhang L., Macdonald D. D., Sikora E., Sikora J. On the kinetics of growth of anodic oxide films. Journal of the Electrochemical Society. 1998;145(3): 898–905. https://doi.org/10.1149/1.1838364

Kichigin V. I., Shein A. B. Effect of anodising on the kinetics of the hydrogen evolution reaction on cobalt silicides in sulphuric acid solution. Condensed Matter and Interphases. 2017;19(3): 359–367 (In Russ., abstract in Eng.). https://doi.org/10.17308/kcmf.2017.19/212

Liu D. Q., Blackwood D. J. Mechanism and dissolution rates of anodic oxide films on silicon. Electrochimica Acta. 2013;105: 209–217. https://doi.org/10.1016/j.electacta.2013.04.024

Thissen P., Seitz O., Chabal Y. J. Wet chemical surface functionalization of oxide-free silicon. Progress in Surface Science. 2012;87(9-11): 272–290. https://doi.org/10.1016/j.progsurf.2012.10.003

Seidel H., Csepregi L., Heuberger A., Baumgärtel H. Anisotropic etching of crystalline silicon in alkaline solutions. I. Orientation dependence and behavior of passivation layers. Journal of the Electrochemical Society. 1990;137(11): 3612–3626. https://doi.org/10.1149/1.2086277

Kichigin V. I., Shein A.B . Anodic behavior of Co2Si in potassium hydroxide solutions. Bulletin of Perm University. Chemistry. 2011;1(3): 4–14 (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/download/elibrary_17563295_89020211.pdf

Sukhotin A. M. (ed.). Handbook of Electrochemistry*. Leningrad: Khimiya Publ.; 1981. 488 p. (In Russ.).

Lohrengel M. M. Thin anodic oxide layers on aluminium and other valve metals: high field regime. Materials Science and Engineering: R: Reports. 1993;11(6): 243–294. https://doi.org/10.1016/0927-796X(93)90005-N

Vanhumbeeck J. F., Proost J. Current understanding of Ti anodisation: fundamental, morphological, chemical and mechanical aspects. Corrosion Reviews. 2009;27: 117–204. https://doi.org/10.1515/CORRREV.2009.27.3.117

Macdonald D. D. The point defect model for the passive state. Journal of the Electrochemical Society. 1992; 139(12):3434–3449. https://doi.org/10.1149/1.2069096

Roh B., Macdonald D. D. Passivity of titanium: part II, the defect structure of the anodic oxide film. Journal of Solid State Electrochemistry. 2019;23: 1967–1979. https://doi.org/10.1007/s10008-019-04254-0

Bösing I., La Mantia F., Thöming J. Modeling of electrochemical oxide film growth – a PDM refinement. Electrochimica Acta. 2022;406: 139847. https://doi.org/10.1016/j.electacta.2022.139847

Seyeux A., Maurice V., Marcus P. Oxide film growth kinetics on metals and alloys. I. Physical model. Journal of the Electrochemical Society. 2013;160(6): C189–C196. https://doi.org/10.1149/2.036306jes

Momeni M., Behazin M., Wren J. C. Mass and charge balance (MCB) model simulations of current, oxide growth and dissolution during corrosion of Co- Cr alloy Stellite-6. Journal of the Electrochemical Society. 2016; 163(3): C94–C105. https://doi.org/10.1149/2.0721603jes

Lutton K., Scully J. R. Kinetics of oxide growth of passive films on transition metals. Encyclopedia of Interfacial Chemistry, Surface Science and Electrochemistry. 2018;284–290. https://doi.org/10.1016/B978-0-12-409547-2.13576-0

Burstein G. T., Davenport A. J. The current-time relationship during anodic oxide film growth under high electric field. Journal of the Electrochemical Society. 1989; 136(4): 936–941. https://doi.org/10.1149/1.2096890

Franssila S. Introduction to Microfabrication. John Wiley & Sons; 2010. 518 p. https://doi.org/10.1002/9781119990413 37. Nascimento M. L. F., Zanotto E. D. Diffusion processes in vitreous silica revisited. Physics and Chemistry of Glasses - European Journal of Glass Science and Technology Part B. 2007;48(4): 201–217. Available at: https://www.ingentaconnect.com/contentone/sgt/ejgst/2007/00000048/00000004/art00001

Koel G. J., Gellings P. J. The contribution of different types of point defects to diffusion in CoO and NiO during oxidation of the metals. Oxidation of Metals. 1972;5: 185–203. https://doi.org/10.1007/BF00609658

Razina N. F. Oxide electrodes in aqueous aolutions*. Alma-Ata: Nauka Publ.; 1982. (In Russ.).

Deml A. M., Holder A. M., O’Hayre R. P., Musgrave C. B. Intrinsic material properties dictating oxygen vacancy formation energetics in metal oxides. The Journal of Physical Chemistry Letters. 2015;6(10): 1948–1953. https://doi.org/10.1021/acs.jpclett.5b00710

Vargas R., Carvajal D., Galavis B., Maimone A., Madriz L., Scharifker B. R. High-field growth of semiconducting anodic oxide films on metal surfaces for photocatalytic application. International Journal of Photoenergy. 2019: 2571906. https://doi.org/10.1155/2019/2571906

Ma L., Pascalidou E.-M., Wiame F., Zanna S., Maurice V., Marcus P. Passivation mechanisms and pre-oxidation effects on model surfaces of FeCrNi austenitic stainless steel. Corrosion Science. 2020;167; 108483. https://doi.org/10.1016/j.corsci.2020.108483

Published
2022-11-01
How to Cite
Shein, A. B., & Kichigin, V. I. (2022). Growth kinetics of anodic oxide layers on cobalt silicides in sulphuric acid solutions. Condensed Matter and Interphases, 24(4), 559-571. https://doi.org/10.17308/kcmf.2022.24/10560
Section
Original articles