Кинетика роста анодных оксидных слоев на силицидах кобальта в растворах серной кислоты
Аннотация
Целью данной работы являлось изучение кинетики роста анодных оксидных пленок на силицидах кобальта в растворах серной кислоты в потенциостатических условиях при различной предобработке поверхности электродов. Исследование проведено на силицидах с низким и высоким содержанием кремния (Co2Si и CoSi2) в 0.05 и 0.5 М H2SO4.
Получены хроноамперограммы в интервале времени t = 0.3–3000 с при потенциалах формирования оксида Ef = 0.2, 0.5 и 1.0 В (с.в.э.). Установлено, что кинетика роста оксидных слоев на силицидах кобальта в кислых растворах заметно зависит от способа предобработки поверхности силицида (механическая полировка; предварительная катодная поляризация в растворе H2SO4; выдержка при потенциале разомкнутой цепи в растворе H2SO4; выдержка в растворе 2 М КОН; выдержка в растворе 2 % HF). В большинстве случаев при небольших t (до 30–50 с) рост оксидной
пленки происходит по механизму миграции ионов в сильном электрическом поле, создаваемом в пленке при анодной поляризации.
В некоторых случаях (силицид Co2Si с более высоким содержанием кобальта; предобработка Co2Si в щелочном растворе, еще более обогащающая поверхность силицида кобальтом; область больших t) полученные результаты указывают на выполнение модели точечных дефектов.
Скачивания
Литература
Maurice V., Marcus P. Current developments of nanoscale insight into corrosion protection by passive oxide films. Current Opinion in Solid State and Materials Science. 2018;22(4): 156–167. https://doi.org/10.1016/j.cossms.2018.05.004
Shein A. B. Electrochemistry of silicides and germanides of transition metal*. Perm: Perm State Univ. Publ., 2009. 269 p. (In Russ)
Schmidt C., Strehblow H.-H. The passivity of Fe/Si alloys in aqueous electrolytes at pH 5 and 9 studied by X-ray photoelectron spectroscopy and ion scattering spectroscopy. Journal of the Electrochemical Society. 1998; 145(3):834–840. https://doi.org/10.1149/1.1838353
Strehblow H.-H., Maurice V., Marcus P. Passivity of metals. In: Corrosion Mechanisms in Theory and Practice. P. Marcus (ed.). CRC Press, Taylor & Francis Group; 2012. pp. 235–326.
Wolff U., Schneider F., Mummert K., Schultz L. Stability and electrochemical properties of passive layers on Fe-Si alloys. Corrosion. 2000;56(12): 1195–1201. https://doi.org/10.5006/1.3280507
Chen H., Ma Q., Shao X., Ma J., Huang B. X. Corrosion and microstructure of the metal silicide (Mo1-xNbx)5Si3. Corrosion Science. 2013;70: 152–160. https://doi.org/10.1016/j.corsci.2013.01.024
Tang C., Wen F., Chen H., Liu J., Tao G., Xu N., Xue J. Corrosion characteristics of Fe3Si intermetallic coatings prepared by molten salt infiltration in sulfuric acid solution. Journal of Alloys and Compounds. 2019;778: 972–981. https://doi.org/10.1016/j.jallcom.2018.11.198
Hu L., Hu B., Gui, Y. Study on the melting and corrosion resistance of Fe-Cr-Si dual phase alloy. IOP Conference Series: Materials Science and Engineering. 2020;782(2): 022031. https://doi.org/10.1088/1757-899X/782/2/022031
Zhang Y., Xiao J., Zhang Y., Liu W., Pei W., Zhao A., Zhang W., Zeng, L. The study on corrosion behavior and corrosion resistance of ultralow carbon high silicon iron-based alloy. Materials Research Express. 2021; 8(2): 026504. https://doi.org/10.1088/2053-1591/abdc52
Shadrin K. V., Panteleeva V. V., Shein A. B. Passivation of chromium dicilicide in acidic media. Bulletin of Perm University. Chemistry. 2021;11(3): 202–211 (In Russ., abstract in Eng.). https://doi.org/10.17072/2223-1838-2021-3-202-211
Baklanov M. R., Badmaeva I. A., Donaton R. A., Sveshnikova L. L., Storm W., Maex K. Kinetics and mechanism of the etching of CoSi2 in HF-based solutions. Journal of the Electrochemical Society. 1996; 143(10): 3245–3251. https://doi.org/10.1149/1.1837192
Strehblow H.-H. Passivity of metals. In: Advances in Electrochemical Science and Engineering. Vol. 8. R. C. Alkire (ed.). Wiley; 2002. pp. 271–374. https://doi.org/10.1002/3527600787.ch4
Panteleeva V. V., Shein A. B. Growth of anodic oxide films on iron-triad metal monosilicides in sulfuric acid electrolyte. Russian Journal of Electrochemistry. 2014;50(11): 1036–1043. https://doi.org/10.1134/S102319351411007X
Behazin M., Biesinger M. C., Noël J. J., Wren J. C. Comparative study of film formation on high-purity Co and Stellite-6: Probing the roles of a chromium oxide layer and gamma-radiation. Corrosion Science. 2012; 63: 40–50. https://doi.org/10.1016/j.corsci.2012.05.007
Lutton K., Gusieva K., Ott N., Birbilis N., Scully J. R. Understanding multi-element alloy passivation in acidic solutions using operando methods. Electrochemistry Communications. 2017;80: 44–47. https://doi.org/10.1016/j.elecom.2017.05.015
Lutton Cwalina K., Ha H. M., Ott N., Reinke P., Birbilis N., Scully J. R. In operando analysis of passive film growth on Ni-Cr and Ni-Cr-Mo alloys in chloride solutions. Journal of the Electrochemical Society. 2019; 166(11):C3241–C3253. https://doi.org/10.1149/2.0261911jes
Wang Z., Di-Franco F., Seyeux A., Zanna S., Maurice V. , Marcus P. Passivation-induced physicochemical alterations of the native surface oxide film on 316L austenitic stainless steel. Journal of the Electrochemical Society. 2019;166(11): C3376–C3388. https://doi.org/10.1149/2.0321911jes
Choudhary S., Thomas S., Macdonald D. D., Birbilis N. Growth kinetics of multi-oxide passive film formed upon the multi-principal element alloy AlTiVCr: Effect of transpassive dissolution of V and Cr. Journal of the Electrochemical Society. 2021;168: 051506. https://doi.org/10.1149/1945-7111/ac018
Burstein G. T. Passivity and localized corrosion. In: Corrosion. Vol. 1. Metal/Environment Reactions. L. L. Shreir, R. A. Jarman, G. T. Burstein (eds.). Oxford: Butterworth-Heinemann; 1994. pp. 1:118–1:150. https://doi.org/10.1016/b978-0-08-052351-4.50013-3
Zhang L., Macdonald D. D., Sikora E., Sikora J. On the kinetics of growth of anodic oxide films. Journal of the Electrochemical Society. 1998;145(3): 898–905. https://doi.org/10.1149/1.1838364
Kichigin V. I., Shein A. B. Effect of anodising on the kinetics of the hydrogen evolution reaction on cobalt silicides in sulphuric acid solution. Condensed Matter and Interphases. 2017;19(3): 359–367 (In Russ., abstract in Eng.). https://doi.org/10.17308/kcmf.2017.19/212
Liu D. Q., Blackwood D. J. Mechanism and dissolution rates of anodic oxide films on silicon. Electrochimica Acta. 2013;105: 209–217. https://doi.org/10.1016/j.electacta.2013.04.024
Thissen P., Seitz O., Chabal Y. J. Wet chemical surface functionalization of oxide-free silicon. Progress in Surface Science. 2012;87(9-11): 272–290. https://doi.org/10.1016/j.progsurf.2012.10.003
Seidel H., Csepregi L., Heuberger A., Baumgärtel H. Anisotropic etching of crystalline silicon in alkaline solutions. I. Orientation dependence and behavior of passivation layers. Journal of the Electrochemical Society. 1990;137(11): 3612–3626. https://doi.org/10.1149/1.2086277
Kichigin V. I., Shein A.B . Anodic behavior of Co2Si in potassium hydroxide solutions. Bulletin of Perm University. Chemistry. 2011;1(3): 4–14 (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/download/elibrary_17563295_89020211.pdf
Sukhotin A. M. (ed.). Handbook of Electrochemistry*. Leningrad: Khimiya Publ.; 1981. 488 p. (In Russ.).
Lohrengel M. M. Thin anodic oxide layers on aluminium and other valve metals: high field regime. Materials Science and Engineering: R: Reports. 1993;11(6): 243–294. https://doi.org/10.1016/0927-796X(93)90005-N
Vanhumbeeck J. F., Proost J. Current understanding of Ti anodisation: fundamental, morphological, chemical and mechanical aspects. Corrosion Reviews. 2009;27: 117–204. https://doi.org/10.1515/CORRREV.2009.27.3.117
Macdonald D. D. The point defect model for the passive state. Journal of the Electrochemical Society. 1992; 139(12):3434–3449. https://doi.org/10.1149/1.2069096
Roh B., Macdonald D. D. Passivity of titanium: part II, the defect structure of the anodic oxide film. Journal of Solid State Electrochemistry. 2019;23: 1967–1979. https://doi.org/10.1007/s10008-019-04254-0
Bösing I., La Mantia F., Thöming J. Modeling of electrochemical oxide film growth – a PDM refinement. Electrochimica Acta. 2022;406: 139847. https://doi.org/10.1016/j.electacta.2022.139847
Seyeux A., Maurice V., Marcus P. Oxide film growth kinetics on metals and alloys. I. Physical model. Journal of the Electrochemical Society. 2013;160(6): C189–C196. https://doi.org/10.1149/2.036306jes
Momeni M., Behazin M., Wren J. C. Mass and charge balance (MCB) model simulations of current, oxide growth and dissolution during corrosion of Co- Cr alloy Stellite-6. Journal of the Electrochemical Society. 2016; 163(3): C94–C105. https://doi.org/10.1149/2.0721603jes
Lutton K., Scully J. R. Kinetics of oxide growth of passive films on transition metals. Encyclopedia of Interfacial Chemistry, Surface Science and Electrochemistry. 2018;284–290. https://doi.org/10.1016/B978-0-12-409547-2.13576-0
Burstein G. T., Davenport A. J. The current-time relationship during anodic oxide film growth under high electric field. Journal of the Electrochemical Society. 1989; 136(4): 936–941. https://doi.org/10.1149/1.2096890
Franssila S. Introduction to Microfabrication. John Wiley & Sons; 2010. 518 p. https://doi.org/10.1002/9781119990413 37. Nascimento M. L. F., Zanotto E. D. Diffusion processes in vitreous silica revisited. Physics and Chemistry of Glasses - European Journal of Glass Science and Technology Part B. 2007;48(4): 201–217. Available at: https://www.ingentaconnect.com/contentone/sgt/ejgst/2007/00000048/00000004/art00001
Koel G. J., Gellings P. J. The contribution of different types of point defects to diffusion in CoO and NiO during oxidation of the metals. Oxidation of Metals. 1972;5: 185–203. https://doi.org/10.1007/BF00609658
Razina N. F. Oxide electrodes in aqueous aolutions*. Alma-Ata: Nauka Publ.; 1982. (In Russ.).
Deml A. M., Holder A. M., O’Hayre R. P., Musgrave C. B. Intrinsic material properties dictating oxygen vacancy formation energetics in metal oxides. The Journal of Physical Chemistry Letters. 2015;6(10): 1948–1953. https://doi.org/10.1021/acs.jpclett.5b00710
Vargas R., Carvajal D., Galavis B., Maimone A., Madriz L., Scharifker B. R. High-field growth of semiconducting anodic oxide films on metal surfaces for photocatalytic application. International Journal of Photoenergy. 2019: 2571906. https://doi.org/10.1155/2019/2571906
Ma L., Pascalidou E.-M., Wiame F., Zanna S., Maurice V., Marcus P. Passivation mechanisms and pre-oxidation effects on model surfaces of FeCrNi austenitic stainless steel. Corrosion Science. 2020;167; 108483. https://doi.org/10.1016/j.corsci.2020.108483
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.