Kinetics of the cathodic evolution of hydrogen on alloys of the MoxW1–xSi2 system in an alkaline electrolyte
Abstract
The kinetics and mechanism of the hydrogen evolution reaction on alloys of the MoxW1-xSi2 system (x = 1.0; 0.68; 0.41; 0) in a 1.0 M NaOH solution have been studied by the methods of polarization and impedance measurements. The cathodic polarization curves of silicides were characterized by the Tafel plots with constants a and b, equal to 0.47–0.49 and 0.068–0.076 V, respectively. The impedance spectra of MoxW1-xSi2 electrodes in the Tafel region are a combination of a capacitive semicircle with a displaced centre at high frequencies and an inductive arc at low frequencies. In the region of the highest frequencies on the impedance plots a straight-line section with a slope slightly higher than 45º was recorded, indicating
the presence of pores in the surface layer of the electrodes.
To describe the hydrogen evolution reaction on silicides an equivalent electrical circuit was used, the Faraday impedance of which consisted of series-connected charge transfer resistance R1 and a parallel R2C2-chain (at R2 < 0, C2 < 0), which corresponded to the atomic hydrogen adsorption on the electrode surface. The impedance of the double layer capacitance was modelled by the constant phase element CPE1.
The results of polarization and impedance measurements for the investigated silicides were in satisfactory agreement with the discharge – electrochemical desorption mechanism, in which both stages are irreversible and have unequal transfer coefficients. The limiting stage is the electrochemical desorption. The Langmuir isotherm for adsorbed atomic hydrogen was fulfilled. It was concluded that MoxW1-xSi2 alloys in an alkaline electrolyte are promising electrode materials that are active in the electrolytic hydrogen evolution reaction.
Downloads
References
Shamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds: I. The hydrogen Eevolution reaction on NiSi, NiAs, NiSb, NiS, NiTe2, and their constituent elements. Journal of The Electrochemical Society. 1964;111(3): 270-278. https://doi.org/10.1149/1.2426107
Tilak B. V., Ramamurthy A. C., Conway B. E. High performance electrode materials for the hydrogen evolution reaction from alkaline media. Proceedings of the Indian Academy of Sciences – Chemical Sciences volume. 1986;97(3-4): 359–393. https://doi.org/10.1007/BF02849200
Wirth S., Harnisch F., Weinmann M., Schröder U. Comparative study of IVB-VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. Applied Catalysis B: Environmental. 2012;126: 225–230. https://doi.org/10.1016/j.ap-catb.2012.07.023
Meyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. International Journal of Hydrogen Energy. 2015;40(7): 2905–2911. https://doi.org/10.1016/j.ijhydene.2014.12.076
Safizadeh F., Ghali E., Houlachi G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review. International Journal of Hydrogen Energy. 2015;40(1): 256–274. https://doi.org/10.1016/j.ijhydene.2014.10.109
Sapountzi F. M., Gracia J. M., Weststrate C. J., Fredriksson H. O. A., Niemantsverdriet J. W. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science. 2017;58: 1–35. https://doi.org/10.1016/j.pecs.2016.09.001
Eftekhari A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy. 2017;42(16): 11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125
Kichigin V. I., Shein A. B. An electrochemical study of the hydrogen evolution reaction at YNi2Ge2 and LaNi2Ge2 electrodes in alkaline solutions. Journal of Electroanalytical Chemistry. 2018;830-831: 72–79. https://doi.org/10.1016/j.jelechem.2018.10.029
Theerthagiri J., Lee S. J., Murthy A. P., Madhavan J., Choi M. Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Current Opinion in Solid State and Materials Science. 2020;24(1): 100805–100827. https://doi.org/10.1016/j.cossms.2020.100805
Vijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. International Journal of Hydrogen Energy. 1990;15(11): 789–794. https://doi.org/10.1016/0360-3199(90)90014-P
Vijh A. K., Belanger G., Jacques R. Electrolysis of water on silicides of some transition metals in alkaline solutions. International Journal of Hydrogen Energy. 1992; 15(7): 479–483.
https://doi.org/10.1016/0360-3199(92)90146-N
Kichigin V. I., Shein A. B. Kinetics and mechanism of hydrogen evolution reaction on cobalt silicides in alkaline solutions. Electrochimica Acta. 2015;164: 260–266. https://doi.org/10.1016/j.electacta.2015.02.198
Panteleeva V. V., Votinov I. S., Polkovnikov I. S., Shein A. B. Kinetics of cathodic hydrogen evolution manganese monosilicide in sulfuric acid electrolyte. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(3): 432–440. (In Russ., abstract in Eng.). https://doi.org/10.17308/kcmf.2019.21/1153
Kuzminykh M. M., Panteleeva V. V., Shein A. B. Cathodic hydrogen evolution on iron disilicide. I. Alkaline solution. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya = ChemChemTech. 2019;62(1): 38–45. https://doi.org/10.6060/ivkkt.20196201.5745
Gurin V. N. Methods for the preparation of refractory compounds of transition metals and prospects for their development. Uspekhi khimii = Russian Chemical Reviews. 1972;41(4): 323–340. https://doi.org/10.1070/RC1972v041n04ABEH002059
Merzhanov A. G., Borovinskaya I. P. Selfpropagating high-temperature synthesis of refractory inorganic compounds. Doklady AN SSSR. 1972;204(2): 366–369. (In Russ.). Available at: http://www.ism.ac.ru/handbook/1st_art.htm
Gorshkov V. A., Yukhvid V. I., Miloserdov P. A., Sachkova N. V. Autowave synthesis of cast Mo-W-Si silicides. Inorganic Materials. 2011;47(4): 375–378. https://doi.org/10.1134/S002016851104011X
Orazem M. E., Tribollet B. Electrochemical impedance spectroscopy. John Wiley and Sons, Hoboken; 2008. 533 p.
Conway B. E., Bai L., Sattar M. A. Role of the transfer coefficient in electrocatalysis: applications to the H2 and O2 evolution reactions and the characterization of participating adsorbed intermediates. International Journal of Hydrogen Energy. 1987; 12(9): 607–621. https://doi.org/10.1016/0360-3199(87)90002-4
Krishtalik L. I. Hydrogen overvoltage and adsorption phenomena: Part III. Effect of the adsorption energy of hydrogen on overvoltage and the mechanism of the cathodic process. In: P. Delahay (Ed.), Advances in Electrochemistry and Electrochemical Engineering. Vol. 7. Intersci. Publ., New York; 1970. pp. 283–340.
Fleischmann M., Grenness M. Electrocrystallization of Ruthenium and Electrocatalysis of Hydrogen Evolution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1972;68: 3205–3215. https://doi.org/10.1039/F19726802305
Vvedenskii A. V., Gutorov I. A., Morozova N. B. The kinetics of cathodic hydrogen evolution on transition metals. I. Theoretical analysis. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2010;12(3): 288–300. (In Russ., abstract in Eng.). Available at:
https://elibrary.ru/item.asp?id=15574174
Thomas J. G. N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Transactions Faraday Society. 1961;57(9): 1603–1611. https://doi.org/10.1039/TF9615701603
Frumkin A. N. Selected proceedings: hydrogen overvoltage. Moscow: Nauka Publ.; 1988. 240 p. (in Russ.)
Keiser H., Beccu K. D., Gutjahr M. A. Abschatzung der Porenstruktur porösen Elektroden aus Impedanzmessung. Electrochimica Acta. 1976;21(8): 539–543 . https://doi.org/10.1016/0013-4686(76)85147-X
Lasia A. Modeling of impedance of porous electrode. In: Modern Aspects of Electrochemistry. No. 43. Ed. by M. Schlesinger. Springer, New York, 2009. pp. 67–137.
Candy J.-P., Fouilloux P., Keddam M., Takenouti H. The characterization of porous electrodes by impedance measurements. Electrochimica Acta. 1981;26(8): 1029–1034. https://doi.org/10.1016/0013-4686(81)85072-4
Sukhotin A. M. Handbook of electrochemistry. Leningrad: Khimiya Publ.; 1981. 488 p. (in Russ.)
Novoselskii I. M., Gudina N. N. Calculation of the mechanism and kinetics of hydrogen evolution from impedance measurements. Elektrokhimiya = Soviet Electrochemistry. 1969;5(6): 670–676. (In Russ.)
Kichigin V. I., Shein A. B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. Electrochimica Acta. 2014;138: 325–333. https://doi.org/10.1016/j.electacta.2014.06.114
Kichigin V. I., Shein A. B. The kinetics of cathodic hydrogen evolution on CeCu2Ge2 electrode in alkaline solution. The role of surface and bulk diffusion of atomic hydrogen. Bulletin of Perm University. Chemistry. 2016;23(3): 6–19. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=27128572
Kichigin V. I., Shein A. B. Additional criteria for the mechanism of hydrogen evolution reaction in the impedance spectroscopy method. Bulletin of Perm University. Chemistry.. 2018;8(3): 316–324. (In Russ.,
abstract in Eng.). https://doi.org/10.17072/2223-1838-2018-3-316-324
Copyright (c) 2022 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.