Влияние режимов электрохимического травления при одностадийном и двухстадийном формировании пористого кремния на степень окисления его поверхностных слоев в естественных условиях

  • Alexander S. Lenshin Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация https://orcid.org/0000-0002-1939-253X
  • Konstantin A. Barkov Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация https://orcid.org/0000-0001-8290-1088
  • Natalya G. Skopintseva Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация
  • Boris L. Agapov Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация
  • Evelina P. Domashevskaya Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация https://orcid.org/0000-0002-6354-4799
Ключевые слова: кремний,, пористый кремний,, многослойные структуры,, электрохимическое травление,, рентгеновская эмиссионная спектроскопия

Аннотация

В работе методами растровой электронной микроскопии и ультрамягкой
рентгеновской эмиссионной спектроскопии были проведены исследования особенностей
формирования многослойных структур пористого кремния и установлено влияние изменения плотности тока при электрохимическом травлении монокристаллических пластин кремния на фазовый состав поверхностных слоев сформированной пористой структуры.

 

 

 

 

ЛИТЕРАТУРА
1. Moshnikov V., Gracheva I., Lenshin A., Spivak Yu. Porous silicon with embedded metal oxides for gas
sensing applications // Journal of Non-Crystalline Solids, 2012 v. 358(3), pp. 590–595. DOI: https://doi.org/10.1016/j.jnoncrysol.2011.10.017
2. Pacholski C. Photonic crystal sensors based on porous silicon // Sensors, 2013, v. 13(4), pp. 4694–4713.
DOI: https://doi.org/10.3390/s130404694
3. Harraz F. Porous silicon chemical sensors and biosensors: A review // Sensors and Actuators B, 2014,
v. 202, pp. 897–912. DOI: https://doi.org/10.1016/j.snb.2014.06.048
4. Jane A., Dronov R., Hodges A., Voelcker N. Porous silicon biosensors on the Advance // Trends in Biotechnology, 2009, v. 27(4), pp. 230–239. DOI: https://doi.org/10.1016/j.tibtech.2008.12.004
5. RoyChaudhuri C. A review on porous silicon based electrochemical biosensors: beyond surface area
enhancement factor // Sensors and Actuators B: Chemical, 2015, v. 10, pp. 310–323. DOI: http://dx.doi.org/10.1016/j.snb.2014.12.089
6. Canham L. Properties of porous silicon. Ed. by Canham L., Malvern: DERA, 1997, 400 p.
7. Lenshin A., Kashkarov V., Spivak Yu., Moshnikov V. Investigations of nanoreactors on the basis
of p-type porous silicon: Electron structure and phase composition // Materials Chemistry and Physics, 2012,
v. 135(2–3), pp. 293–297. DOI: https://doi.org/10.1016/j.matchemphys.2012.03.095
8. Lenshin A., Kashkarov V., Turishchev S., Smirnov M., Domashevskaya E. Effect of natural aging on
photoluminescence of porous silicon // Technical Physics Letters, 2011, v. 37(9), pp. 789-792. DOI: https://doi.org/10.1134/s1063785011090124
9. Seredin P., Lenshin A., Goloshchapov D., Lukin A., Arsentyev I., Bondarev A., Tarasov I. Investigations
of nanodimensional Al2O3 fi lms deposited by ion-plasma sputtering onto porous silicon // Semiconductors,
2015, v. 49(7), pp. 915–920. DOI: https://doi.org/10.1134/s1063782615070210
10. Qian M., Bao X.Q., Wang L.W., Lu X., Shao J., Chen X.S. Structural tailoring of multilayer porous
silicon for photonic crystal application. // Journal of Crystal Growth, 2006, v. 292(9), pp. 347–350. DOI:
https://doi.org/10.1016/j.jcrysgro.2006.04.033
11. Verma D., Khan F., Singh S. Correlation between refl ectivity and photoluminescent properties of
porous silicon fi lms // Solar Energy Materials & Solar Cells, 2011, v. 95(1), pp. 30–33. DOI: https://doi.org/10.1016/j.solmat.2010.05.030
12. Theiß W. The dielectric function of porous silicon – how to obtain it and how to use it // Thin
Solid fi lms, 1996, v. 276 (1–2), pp. 7–12. DOI: https://doi.org/10.1016/0040-6090(95)08036-8
13. Caballero-Hernandez J., Godinho V., Lacroix B., Haro M., Jamon D., Fernandez A. Fabrication of optical
multilayer devices from porous silicon coatings with closed porosity by magnetron sputtering // ACS Appl.
Mater. Interfaces, 2015, v. 7(25), pp. 13889–13897. DOI: https://doi.org/10.1021/acsami.5b02356
14. Terekhov V, Kashkarov V, Manukovskii E., Schukarev A., Domashevskaya E. Determination of the
phase composition of surface layers of porous silicon by ultrasoft X-ray spectroscopy and X-ray photoelectron
spectroscopy techniques // J. Electron. Spectrosc., 2001, v. 114–116, pp. 895–900. DOI: https://doi.org/10.1016/s0368-2048(00)00393-5
15. Shulakov A. X-ray emission depth-resolved spectroscopy for investigation of nanolayers. // Journal
of Structural Chemistry, Supplement, 2011, v. 52(S1), pp. 1–12. DOI: https://doi.org/10.1134/s0022476611070018
16. Mashin A., Khokhlov A., Mashin N., Domashevskaya E., Terekhov V. X-ray spectroscopic study
of electronic structure of amorphous silicon and silicyne // Semiconductors, 2001, v. 35(8), pp. 956–961.
DOI: https://doi.org/10.1134/1.1393035
17. Domashevskaya E., Kashkarov V., Manukovskii E., Shchukarev A., Terekhov V. XPS, USXS and PLS
investigations of porous silicon // J. Electron. Spectrosc., 1998, v. 88–91, pp. 969–972. DOI: https://doi.org/10.1016/s0368-2048(97)00274-0
18. Lenshin A., Kashkarov V., Domashevskaya E., Bel’tyukov A., Gil’mutdinov F. Investigations of the
composition of macro-, micro- and nanoporous silicon surface by ultrasoft X-ray spectroscopy and X-ray
photoelectron spectroscopy // Applied Surface Science, 2015, 359, pp. 550–559. DOI: https://doi.org/10.1016/j.apsusc.2015.10.140
19. Suriani Yaakob, Mohamad Abu Bakar, Jamil Ismail, Noor Hana Hanif Abu Bakar, Kamarulazizi
Ibrahim. The formation and morphology of highly doped N-type porous silicon: effect of short etching
time at high current density and evidence of simultaneous chemical and electrochemical dissolutions //
Journal of Physical Science, 2012, v. 23(2), pp. 17–31. Available at: http://jps.usm.my/wp-content/uploads/2014/10/23.2.2.pdf (accessed 11.11.2019)

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Alexander S. Lenshin, Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация

Леньшин Александр Сергеевич – к. ф.-м. н., с. н. с., кафедра физики твердого тела и наноструктур, Воронежский государственный университет, Воронеж, Российская Федерация; e-mail: lenshinas@phys.vsu.ru

Konstantin A. Barkov, Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация

Барков Константин Александрович – аспирант, кафедра физики твердого тела и наноструктур, Воронежский государственный университет, Воронеж, Российская Федерация;
e-mail: barkov@phys.vsu.ru.

Natalya G. Skopintseva, Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация

Скопинцева Наталья Геннадиевна – студент, кафедра физики твердого тела и наноструктур,
Воронежский государственный университет, Воронеж, Российская Федерация; e-mail: skopintseva@phys.vsu.ru

Boris L. Agapov, Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация

Агапов Борис Львович – к. т. н., Центр коллективного пользования научным оборудованием, Воронежский государственный университет, Воронеж, Российская Федерация; e-mail:
b.agapov2010@yandex.ru

Evelina P. Domashevskaya, Воронежский государственный университет, Университетская площадь, д. 1, 394018 Воронеж, Российская Федерация

Домашевская Эвелина Павловна – д. ф.-м. н., профессор, заведующий кафедрой физики твердого тела и наноструктур, Воронежский государственный университет, Воронежский государственный университет, Воронеж, Россий ская Федерация; e-mail: ftt@phys.vsu.ru. 

Опубликован
2019-12-19
Как цитировать
Lenshin, A. S., Barkov, K. A., Skopintseva, N. G., Agapov, B. L., & Domashevskaya, E. P. (2019). Влияние режимов электрохимического травления при одностадийном и двухстадийном формировании пористого кремния на степень окисления его поверхностных слоев в естественных условиях. Конденсированные среды и межфазные границы, 21(4), 534-543. https://doi.org/10.17308/kcmf.2019.21/2364
Раздел
Статьи