A Topological Structure Model and a Nonlinear Formation Model of ZnO Tetrapods

Keywords: Topological space, crystal polymorphism, hierarchy, dynamic chaos, selfassembly, IFS, fractal, affine transformations.


Objectives. Development of a generalised mathematical model of hierarchical crystalline nanoforms
of zinc oxide tetrapods produced by vapor transport synthesis under the conditions of
chaotic particle dynamics.
Methods and methodology. Topological analysis of nanoscale polymorphic transformations,
nonlinear dynamics of self-assembled structures formation under the conditions of dynamic
chaos. An algorithm to construct an attractor of an affine system of iterated functions with parameters
determined by experimental diagnostic methods: electron microscopy, diffraction studies,
and numerical methods of quantum-chemical calculations for core of hierarchical structure.
Results. The classification of tetrapods as a hierarchical structures was established; nanotechnological
cycle of self-organization of zinc oxide tetrapods chaos - core - percolation system - crystal was determined; the tetrapod structure was mathematically identified as four linked topological
spaces of wurtzite crystal growth; the tetrapod formation modelling method was developed by
constructing an attractor of iterated function systems; the rule of the relation linking a dot in the
nonlinear stochastic dynamic system model attractor with the topological crystallisation space in
the formation of the self-assembled hierarchical crystal structure was established.
A theoretical approach was developed that allows creating and modifying models of three dimensional
space-distributed hierarchical crystal structures characterised by novel physical and
topological properties, as compared to a monocrystal, as well as controlling their form and classifying
the structures by topological and symmetrical properties.
Conclusion. The formation of zinc oxide tetrapods occurs in four linked topological spaces,
modelled as continuous maps of a B4 crystal growth space. The transition from the sphalerite
core growth to the growth of four wurtzite crystals that constitute the tetrapod hierarchical
structure is considered as topological space growth disruption during a polymorphic transformation
of nanoscale. The topological approach involving the affine iterated function systems may
be applied to modelling precrystallisation stages of multipods, as well as dendritic crystal structures
and fractal nanocomposites, and has the capacity to predict their morphology, geometrical
and structural properties.




1. Tsuneta T., Tanda S. Formation and growth of NbSe3 topological crystals // Journal of Crystal Growth,
2004, v. 264(1−3), pp. 223-231. DOI: https://doi.org/10.1016/j.jcrysgro.2003.12.020
2. Liu Y., Chen Z., Kang Z., Bello I., Fan X., Ismathullakhan Shafi q, Zhang W., Lee S.-T. Self-catalytic
synthesis of ZnO tetrapods, nanotetraspikes, and nanowires in air at atmospheric pressure // The Journal
of Physical Chemistry C, 2008, v. 112(25), pp. 9214–9218. DOI: https://doi.org/10.1021/ jp800907g
3. Domashevskaya E. P., Ryabtsev S. V., Min C., Ivkov S. A., Avilov S. V. Effect of the gas transport syn thesis
temperature on the ZnO crystal morphology // Kondensirovannye sredy i mezhfaznye granitsy [Condensed
Matter and Interphases], 2016, v. 18(4), pp. 513–520.
4. Palumbo R., Lédé J., Boutin O., Elorza-Ricart E., Steinfeld A., Müller S., Weidenka A., Fletcher E. A.,
Bielicki J. The production of Zn from ZnO in a hightemperature solar decomposition quench process − I.
The scientifi c framework for the process // Chemical Engineering Science, 1998, v. 53(14), pp. 2503−2517. DOI:
5. Lazzarini L., Salviati G., Fabbri F., Zha M., Calestani D., Zappettini A., Sekiguchi T., Dierre B. Unpredicted
nucleation of extended zinc blende phases in wurtzite ZnO nan otetrapod arms // ACS Nano, 2009,
v. 3(10), pp. 3158–3164. DOI: https://doi.org/10.1021/nn900558q
6. Wu Y., Zhang X.-H., Xu F., Zheng L.-S., Kang J. A Hierarchical lattice structure and formation mechanism
of ZnO nano-tetrapods // Nanotechnology, 2009, v. 20(32), p. 325709. DOI: https://doi.org/10.1088/0957-4484/20/32/325709
7. Thepnurat M., Chairuangsri T., Hongsith N., Ruankham P., Choopun S. Realization of interlinked
ZnO Tetrapod Networks for UV Sensor and Room-Temperature Gas Sensor // ACS Applied Materials &
Interfaces, 2015, v. 7(43), pp. 24177–24184. DOI: https://doi.org/10.1021/acsami.5b07491
8. Thepnurat M., Chairuangsri T., Hongsith N., Ruankham P., Choopun S. The effect of morphology
and functionalization on UV detection properties of ZnO networked tetrapods and single nanowires //
Vacuum, 2019, v. 166, pp. 393–398. DOI: https://doi.org/10.1016/j.vacuum.2018.11.046
9. Diep V. M., Armani A. M. Flexible light-emittingnanocomposite based on ZnO nanote trapods // Nano
Letters, 2016, v. 16(12), pp. 7389–7393. DOI: https://doi.org/10.1021/acs.nanolett.6b02887
10. Zalamai V. V., Ursaki V. V., Tiginyanu I. M., Burlacu A., Rusu E. V., Klingshirn C., Fallert J., Sartor J., Kalt
H. Impact of size upon lasing in ZnO microtetrapods //Applied Physics B, 2009, v. 99(1/2), pp. 215–222. DOI:
11. Yan L., Uddin A., Wang H. ZnO tetrapods: synthesis and applications in solar cells // Nanomaterials
and Nanotechnology, 2015, v. 5, p. 19. DOI: https://doi.org/10.5772/60939
12. Shiojiri, M., Kaito C. Structure and growth of ZnO smoke particles prepared by gas evaporation technique Journal of Crystal Growth, 1981, v. 52, pp. 173–177. DOI: https://doi.org/10.1016/0022-0248(81)90189-5
13. Kudera S., Carbone L., Manna L., Parak W. J. Growth mechanism, shape and composition control of semiconductor nanocrystals // Semiconductor Nanocrystal Quantum Dots. Springer Vienna, 2008, pp. 1–34.
DOI: https://doi.org/10.1007/978-3-211-75237-1_1
14. Budanov V. G. Metodologiya sinergetiki v postneklassicheskoy nauke i v obrazovanii [Methodology of
synergetics in postnonclassical science and education]. Moscow, LKI Publ., 2007, 242 p. (in Russ.)
15. Avilov S. V., Tuchin A. V., Shebanov A. N., Domashevskaya E. P. Infl uence of the crystal structure of the
nucleus on the morphology of T-ZnO tetrapods // Crystallography Reports, 2019, v. 64(2), pp. 212–215.
DOI: https://doi.org/10.1134/S1063774519020032
16. Wang B.-B., Xie J.-J., Yuan Q., Zhao Y.-P. Growth mechanism and joint structure of ZnO tetrapods //
Journal of Physics D: Applied Physics, 2008, v. 41(10), p. 102005. DOI: https://doi.org/10.1088/0022-3727/41/10/102005
17. Hongsith N., Chairuangsri T., Phaechamud T., Choopun S. Growth kinetic and characterization of tetrapod ZnO nanostructures // Solid State Communications,2009, v. 149(29/30), pp. 1184–1187. DOI: https://doi.org/10.1016/j.ssc.2009.04.029
18. Fomenko A. T. Naglyadnaya geometriya i topologiya: Matematicheskie obrazy v real’nom mire
[Visual geometry and topology: Mathematical images in the real world]. Moscow, Izdatel’stvo Moskovskogo
universiteta Publ., 1998, 416 p. (in Russ.)
19. Harari F. Teoriya grafov [Graph theory]. Moscow, URSS Publ., 2003, 300 p. (in Russ.)
20. Jaffe J. E., Hess A. C. Hartree–Fock study of phase changes in ZnO at high pressure // Physical
Review B, 1993, v. 48(11), p. 7903. DOI: https://doi.org/10.1103/PhysRevB.48.7903
21. Borisovich Yu.G., Izrailevich Ya.A., Bliznyakov N.M., Fomenko T.N. Vvedenie v topologiyu [Introduction
to topology]. Moscow, Lenand Publ., 2015, 416 p. (in Russ.)
22. Zaslavskiy G., Sagdeev R. Vvedenie v nelineynuyu fi ziku. Ot mayatnika do turbulentnosti i khaosa [Introduction
to nonlinear physics. From pendulum to turbulence and chaos]. Moscow, Nauka Publ., 1988, 368 p. (in Russ.)
23. Norton D. E. The fundamental theorem of dynamical systems // Comment. Math. Univ. Carolin,
1995, v. 36(3), pp. 585–597.
24. Collet P., Eckmann J.-P. Iterated maps on the interval as dynamical systems. Boston: Birkhäuser Boston,
2009. DOI: https://doi.org/10.1007 / 978 -0-8176-4927-2
25. Barnsley M., Vince A. Developments in fractal geometry // Bulletin of Mathematical Sciences, 2013,
v. 3(2), pp. 299–348. DOI: https://doi.org/10.1007/s13373-013-0041-3
26. Barnsley M., Vince A. The chaos game on a general iterated function system // Ergodic theory and
dynamical systems, 2011, v. 31(4), pp. 1073–1079.
27. Avilov S. V., Zhukalin D. A., Bitutskaya L. A., Domashevskaya E. P. “3-D modelling of fractal nanoclusters
using the iterated affine transformations systems method”. Recent Advances in Mathematics,  Statistics and Economics, (Pure Mathematics – Applied Mathematics (PM-AM ’14)), v. 1, March 15−17, 2014,Venice, Italy, 2014, pp. 128–130.
28. Zhang, Q., Liu S.-J., Yu S.-H. Recent advances in oriented attachment growth and synthesis of functional
materials: concept, evidence, mechanism, and future // J. Mater. Chem., 2009, v. 19(2), pp. 191–207.
DOI: https://doi.org/10.1039/B807760F
29. Bitutskaya L. A., Golovinsky P. A., Zhukalin D. A., Alexeeva E. V., Avilov S. A., Lukin A. N. Fractal
coagulation of polydisperse hydrated mineral systems doped by CNTs // Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2013, v. 15(1), pp. 59–64.
30. Avilov S., Lamon L., Hristozov D., Marcomini A. Improving the prediction of environmental fate of
engineered nanomaterials by fractal modelling // Environment International, 2017, v. 99, pp. 78–86. DOI:


Download data is not yet available.

Author Biographies

Sviatoslav V. Avilov, Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

postgraduate student, Department of Solid State Physics and Nanostructures,
Voronezh State University, Voronezh, Russian Federation; e-mail: sviatoslavavilov@gmail.com. 

Larisa A. Bityutskaya, Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Cand. Sci. (Chem.), Associate Professor, Department of Physics of Semiconductors
and Microelectronics, Voronezh State University, Voronezh, Russian Federation; e-mail:

Evelina P. Domashevskaya, Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Dr. Sci. (Phys.-Math.), Full Professor, Head of the Department of Solid State Physics and Nanostructures, Voro nezh State University, Voronezh, Russian Federation; email: ftt@phys.vsu.ru. 

How to Cite
Avilov, S. V., Bityutskaya, L. A., & Domashevskaya, E. P. (2019). A Topological Structure Model and a Nonlinear Formation Model of ZnO Tetrapods. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(4), 458-470. https://doi.org/10.17308/kcmf.2019.21/2357