Influence of Electrochemical Etching Modes under One Stage and Two Stage Formation of Porous Silicon on the Degree of Oxidation of its Surface Layer under Natural Conditions

  • Alexander S. Lenshin Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation https://orcid.org/0000-0002-1939-253X
  • Konstantin A. Barkov Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation https://orcid.org/0000-0001-8290-1088
  • Natalya G. Skopintseva Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Boris L. Agapov Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Evelina P. Domashevskaya Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation https://orcid.org/0000-0002-6354-4799
Keywords: silicon,, porous silicon,, multilayer structures,, electrochemical etching,, X-ray emission spectroscopy

Abstract

Purpose. In this study, some features of the formation of the multilayer structures in porous
silicon were investigated by scanning electron microscopy and X-ray emission spectroscopy.
Methods and tesniques. Method of electrochemical etching in hydrofl uoric acid solutions was
used for the synthesis of substrates. Multi-layered structures were formed by the change of the
current density during electrochemical etching (ECE). The morphology of the samples was studied
by scanning electron microscopy (SEM). Phase composition of the samples at the different depth
of analysis was investigated by ultrasoft X-ray emission spectroscopy (USXES). Computer simulation
of the obtained emission spectra was performed using the spectra of references phases.
Results. Multi-layered structures of porous silicon were obtained by the electrochemical etching
technique at the step change of the current density in the ECE process. Using the SEM technique,
pore sizes and the thickness of the formed porous silicon layers were determined. Analysis of
the samples by USXES technique with the following computer simulation enabled an
understanding of the regularities in the change of the phase composition for the samples of
multi-layered por-Si structures of their formation regimes.
Conclusion. Features of formation of the multi-layered por-Si structures at the step changes of
the current density in ECE process were established. The morphology and phase composition of
the porous layer for both single-layer and multilayer structures differed from the surface to the
volume and depended on the regime of formation. This fi nding must be taken into account when
creating functional electronics based on por-Si multilayers.

 

 

 

REFERENCES

1. Moshnikov V., Gracheva I., Lenshin A., Spivak Yu. Porous silicon with embedded metal oxides for gas
sensing applications // Journal of Non-Crystalline Solids, 2012 v. 358(3), pp. 590–595. DOI: https://doi.org/10.1016/j.jnoncrysol.2011.10.017
2. Pacholski C. Photonic crystal sensors based on porous silicon // Sensors, 2013, v. 13(4), pp. 4694–4713.
DOI: https://doi.org/10.3390/s130404694
3. Harraz F. Porous silicon chemical sensors and biosensors: A review // Sensors and Actuators B, 2014,
v. 202, pp. 897–912. DOI: https://doi.org/10.1016/j.snb.2014.06.048
4. Jane A., Dronov R., Hodges A., Voelcker N. Porous silicon biosensors on the Advance // Trends in Biotechnology, 2009, v. 27(4), pp. 230–239. DOI: https://doi.org/10.1016/j.tibtech.2008.12.004
5. RoyChaudhuri C. A review on porous silicon based electrochemical biosensors: beyond surface area
enhancement factor // Sensors and Actuators B: Chemical, 2015, v. 10, pp. 310–323. DOI: http://dx.doi.org/10.1016/j.snb.2014.12.089
6. Canham L. Properties of porous silicon. Ed. by Canham L., Malvern: DERA, 1997, 400 p.
7. Lenshin A., Kashkarov V., Spivak Yu., Moshnikov V. Investigations of nanoreactors on the basis
of p-type porous silicon: Electron structure and phase composition // Materials Chemistry and Physics, 2012,
v. 135(2–3), pp. 293–297. DOI: https://doi.org/10.1016/j.matchemphys.2012.03.095
8. Lenshin A., Kashkarov V., Turishchev S., Smirnov M., Domashevskaya E. Effect of natural aging on
photoluminescence of porous silicon // Technical Physics Letters, 2011, v. 37(9), pp. 789-792. DOI: https://doi.org/10.1134/s1063785011090124
9. Seredin P., Lenshin A., Goloshchapov D., Lukin A., Arsentyev I., Bondarev A., Tarasov I. Investigations
of nanodimensional Al2O3 fi lms deposited by ion-plasma sputtering onto porous silicon // Semiconductors,
2015, v. 49(7), pp. 915–920. DOI: https://doi.org/10.1134/s1063782615070210
10. Qian M., Bao X.Q., Wang L.W., Lu X., Shao J., Chen X.S. Structural tailoring of multilayer porous
silicon for photonic crystal application. // Journal of Crystal Growth, 2006, v. 292(9), pp. 347–350. DOI:
https://doi.org/10.1016/j.jcrysgro.2006.04.033
11. Verma D., Khan F., Singh S. Correlation between refl ectivity and photoluminescent properties of
porous silicon fi lms // Solar Energy Materials & Solar Cells, 2011, v. 95(1), pp. 30–33. DOI: https://doi.org/10.1016/j.solmat.2010.05.030
12. Theiß W. The dielectric function of porous silicon – how to obtain it and how to use it // Thin
Solid fi lms, 1996, v. 276 (1–2), pp. 7–12. DOI: https://doi.org/10.1016/0040-6090(95)08036-8
13. Caballero-Hernandez J., Godinho V., Lacroix B., Haro M., Jamon D., Fernandez A. Fabrication of optical
multilayer devices from porous silicon coatings with closed porosity by magnetron sputtering // ACS Appl.
Mater. Interfaces, 2015, v. 7(25), pp. 13889–13897. DOI: https://doi.org/10.1021/acsami.5b02356
14. Terekhov V, Kashkarov V, Manukovskii E., Schukarev A., Domashevskaya E. Determination of the
phase composition of surface layers of porous silicon by ultrasoft X-ray spectroscopy and X-ray photoelectron
spectroscopy techniques // J. Electron. Spectrosc., 2001, v. 114–116, pp. 895–900. DOI: https://doi.org/10.1016/s0368-2048(00)00393-5
15. Shulakov A. X-ray emission depth-resolved spectroscopy for investigation of nanolayers. // Journal
of Structural Chemistry, Supplement, 2011, v. 52(S1), pp. 1–12. DOI: https://doi.org/10.1134/s0022476611070018
16. Mashin A., Khokhlov A., Mashin N., Domashevskaya E., Terekhov V. X-ray spectroscopic study
of electronic structure of amorphous silicon and silicyne // Semiconductors, 2001, v. 35(8), pp. 956–961.
DOI: https://doi.org/10.1134/1.1393035
17. Domashevskaya E., Kashkarov V., Manukovskii E., Shchukarev A., Terekhov V. XPS, USXS and PLS
investigations of porous silicon // J. Electron. Spectrosc., 1998, v. 88–91, pp. 969–972. DOI: https://doi.org/10.1016/s0368-2048(97)00274-0
18. Lenshin A., Kashkarov V., Domashevskaya E., Bel’tyukov A., Gil’mutdinov F. Investigations of the
composition of macro-, micro- and nanoporous silicon surface by ultrasoft X-ray spectroscopy and X-ray
photoelectron spectroscopy // Applied Surface Science, 2015, 359, pp. 550–559. DOI: https://doi.org/10.1016/j.apsusc.2015.10.140
19. Suriani Yaakob, Mohamad Abu Bakar, Jamil Ismail, Noor Hana Hanif Abu Bakar, Kamarulazizi
Ibrahim. The formation and morphology of highly doped N-type porous silicon: effect of short etching
time at high current density and evidence of simultaneous chemical and electrochemical dissolutions //
Journal of Physical Science, 2012, v. 23(2), pp. 17–31. Available at: http://jps.usm.my/wp-сontent/uploads/2014/10/23.2.2.pdf (accessed 11.11.2019)

Downloads

Download data is not yet available.

Author Biographies

Alexander S. Lenshin, Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Cand. Sci. (Phys.- Math.), Senior Researcher, Department of Solid State Physics
and Nanostructures, Voronezh State University, Voronezh, Russian Federation; e-mail:lenshinas@phys.vsu.ru

Konstantin A. Barkov, Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

postgraduate student, Department of Solid State Physics and Nanostructures,
Voronezh State University, Voronezh, Russian Federation; e-mail: barkov@phys.vsu.ru.

Natalya G. Skopintseva, Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

student, Department of Solid State Physics and Nanostructures, Voronezh
State University, Voronezh, Russian Federation; email: skopintseva@phys.vsu.ru

Boris L. Agapov, Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Cand. Sci. (Eng.), Centre for Collective Use of Scientifi c Equipment, Voronezh
State University, Voronezh, Russian Federation; e-mail: b.agapov2010@yandex.ru

Evelina P. Domashevskaya, Voronezh State University, 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Dr. Sci. (Phys.- Math.), Full Professor, Head of the Department of
Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russian Federation;
email: ftt@phys.vsu.ru

Published
2019-12-19
How to Cite
Lenshin, A. S., Barkov, K. A., Skopintseva, N. G., Agapov, B. L., & Domashevskaya, E. P. (2019). Influence of Electrochemical Etching Modes under One Stage and Two Stage Formation of Porous Silicon on the Degree of Oxidation of its Surface Layer under Natural Conditions. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(4), 534-543. https://doi.org/10.17308/kcmf.2019.21/2364
Section
Статьи