Развитие методов исследования и синтеза твердых фаз в научной школе Я. А. Угая. Обзор
Аннотация
Более пятидесяти лет в Воронежском государственном университете существует научная школа, созданная Яковом Александровичем Угаем. Одним из направлений работ этой школы являлось создание физико-химические основ получения твердых фаз в системах с летучими компонентами, что предопределило необходимость развития методов исследования давления пара (тензиметрических методов). В статье делается акцент лишь на части работ сотрудников ВГУ, которые были посвящены исследованию и построению Р-Т-х диаграмм. В настоящем обзоре проводится анализ фазовых равновесий и природы промежуточных фаз в системах AIV – BV, AIV
– BV – СV и AIII – BVI. Вследствие особого характера катион-катионных и анион-анионных связей в этих соединениях существует заметная специфика свойств, что делает их перспективными, в частности, 2D материалами. Приводится обзор работ, посвященных построению Р-Т-х диаграмм и исследованию процессов дефектообразования в двойных и тройных системах на основе соединений AIVBV. Необходимо подчеркнуть, что высокие значения давления пара требовали модернизации известных методик, что позволило проводить эксперименты при давлениях порядка 35-40 атмосфер. Изучение систем AIII - BVI осложняют, напротив, низкие величины давления паров над халькогенидами индия и галлия, а также сложный состав пара. Для такого рода систем был разработан метод вспомогательного компонента, возможности применения которого достаточно широки и не ограничиваются соединениями AIIIBVI. Создан и применен новый метод регулирования нестехиометрии с помощью селективных неразрушающих транспортных химических реакций (т. е. с участием вспомогательного компонента). Основа способа состоит во введении или удалении одного из компонентов образца при помощи селективной транспортной химической реакции. В заключении проведен анализ развития методов исследования и синтеза промежуточных фаз с варьируемым составом (свойствами) на примере рассмотренных систем
Скачивания
Литература
http://www.science.vsu.ru/resources/schools/ugai.pdf
Olesinski R. W., Abbaschian G. J. Bulletin of Alloy Phase Diagrams. 1985;6(3): 250−254. https://doi.org/10.1007/bf02880409
Massalski T. B. Binary alloy phase diagrams. ASM International: 1986; p. 187.
Miller L., Kannewurf C.R. Optical properties of single crystal silicon arsenides. Journal of Physics and Chemistry of Solids. 1970;31(4): 849–855. https://doi.org/10.1016/0022-3697(70)90218-0
Rau J. W., Kannewurf C. R. Optical absorption, reflectivity and electrical conductivity in GeAs. Physical Review B. 1977;3(8): 2581–2587. https://doi.org/10.1103/physrevb.3.2581
Ugai Ya. A., Gladyshev N. F., Goncharov E. G. Tenzimetricheskoe issledovanie sistemy Ge-As [Tensimetric study of the Ge-As system]. Russian Journal of Inorganic Chemistry. 1978;23(4): 1065–1068. Available at: https://www.elibrary.ru/item.asp?id=29096579 (In Russ.)
Goncharov E. G., Gladyshev N. F., Ugai Ya. A. Fiziko-khimicheskaya priroda promezhutochnykh faz v sisteme germanii – mysh’yak [Physicochemical nature of intermediate phases in the germanium - arsenic system]. Russian Journal of Inorganic Chemistry. 1977;22(7): 1951–1956. Available at: https://www.elibrary.ru/item.asp?id=29091830 (In Russ.)
Ugai Ya. A., Miroshnichenko S. N., Goncharov E. G. Issledovanie R-T-x diagrammy sistemy Si-As [Study of the P-T-x diagram of the Si-As system]. Izvestiya AN SSSR. Neorganicheskie materialy (Inorganic Materials).1974;10(10): 174-1777. Available at: https://www.elibrary.ru/item.asp?id=29085699 (In Russ.)
Popov A. E., Zavrazhnov A. Yu., Averbakh E. M., Goncharov E. G. P-T-x diagramma diarsenida kremniya [P-T-x diagram of silicon diarsenide]. Inorganic Materials.1993;29(11): 1458–1461. Available at: https://www.elibrary.ru/item.asp?id=29109931 (In Russ.)
Ugai Ya. A., Sokolov L. I., Goncharov E. G., Makarov V. S. R-T-x diagramma sostoyaniya i termodinamika fazovykh ravnovesii v sisteme kremnii – fosfor [P-T-x state diagram and thermodynamics of phase equilibria in the silicon - phosphorus system]. Inorganic Materials. 1987;32(5): 1198-1200. Available at: https://www.elibrary.
ru/item.asp?id=29121653 (In Russ.)
Ugai Y. A., Semenova G. V., Sokolov L. I., Goncharov E. G. Thermal dissociation of silicon monophosphide. Russian Journal of Inorganic Chemistry. 1987;32(6): 875–877.
Ugai Ya. A., Sokolov L. I., Goncharov E. G. Termograficheskoe issledovanie razreza sistemy Ge-P-Pb [Thermographic study of the Ge-P-Pb system section]. Izvestiya AN SSSR. Neorganicheskie materialy (Inorganic
Materials). 1973;9(8): 1445–1447. Available at: https://www.elibrary.ru/item.asp?id=29085659 (In Russ.)
Goncharov E. G., Sokolov L. I., Ugai Ya. A. Diagramma sostoyaniya i nekotorye termodinamicheskie parametry sistemy Ge-P [P-T-x diagram of the state of the Ge-P system]. Russian Journal of Inorganic Chemistry. 1975;20(9): 2452–2454. Available at: https://www.elibrary.ru/item.asp?id=29085724 (In Russ.)
Ugai Ya. A., Sokolov L. I., Goncharov E. G., Pshestanchik V. R. P-T-x diagramma sostoyaniya sistemy Ge-P i termodinamika vzaimodeistviya komponentov [P-T-x diagram of the state of the Ge-P system and the thermodynamics of the interaction of the components]. Russian Journal of Inorganic Chemistry. 1978;23(7):
–1911. Available at: https://www.elibrary.ru/item.asp?id=29096578 (In Russ.)
Ugai Ya. A., Popov A. E., Goncharov E. G. Oblast’ gomogennosti arsenida germaniya [Homogeneity region of germanium arsenide]. Russian Journal of Inorganic Chemistry. 1982;27(7): 1782–1787. Available at: https://www.elibrary.ru/item.asp?id=29096104 (In Russ.)
Zavrazhnov A. Yu., Turchen D. N., Goncharov E. G., Fedorova M. V. P-T-X phase diagram of the Ge-As system near germanium diarsenide. Inorganic Materials. 1998;34(7): 637–641.
Ugai Ya. A., Popov A. E., Goncharov E. G., Lukin A. N., Samoilov A. M. Elektrofizicheskie svoistva i oblast’ gomogennosti arsenida germaniya [Electrophysical properties and homogeneity region of germanium arsenide]. Izvestiya AN SSSR. Neorganicheskie materialy (Inorganic Materials). 1983;19(2): 190–192. Available at: https://www.elibrary.ru/item.asp?id=29095704 (In Russ.)
Goncharov E. G., Popov A. E., Zavrazhnov A. Yu. Poluprovodnikovye fosfidy i arsenidy kremniya i germaniya
[Semiconductor phosphides and arsenides of silicon and germanium]. Inorganic Materials. 1995;31(5): 579–591. Available at: https://www.elibrary.ru/item.asp?id=29113633 (In Russ.)
Lukin A. N. Elektricheskie svoistva monoklinnykh kristallov gruppy AIVBV. Fiziko-khimicheskie protsessy v poluprovodnikakh i na ikh poverkhnosti [Electrical properties of monoclinic crystals of the AIVBV group. In: Physicochemical processes in semiconductors and on their surfaces / Collection of articles]. Voronezh: VSU Publ.; 1981. p. 148–151. (In Russ.)
Lukin A. N., Sokolov L. I., Kavetskii V. S. Elektrofizicheskie i opticheskie svoistva fosfida germaniya. Khimiya i tekhnologiya fosfidov i fosforosoderzhashchikh splavov [Electrophysical and optical properties of germanium phosphide. In: Chemistry and technology of phosphides and phosphorus-containing alloys / Collection of articles] Kiev: 1979. p. 133–135. (In Russ.)
Schmetterer C. Interaction of Sn-based sSolders with Ni(P)-Substrates: The Ni–P, P–Sn and Ni–P–Sn phase diagrams: Diss. Dr. rer. Nat. Wien: 2009. 143 p.
Schmetterer C., Ganesan R. Ipser H. Interaction of Sn-based solders with Ni(P) substrates: phase equilibria and thermochemistry. In: Lead-Free Solders: Materials Reliability for Electronics. 2012. p. 71–118. https://doi.org/10.1002/9781119966203.ch4
Shevelkov A. V. Thermoelectric materials: an introduction. Dalton Trans. 2010;39(4): 977–977. https://doi.org/10.1039/b924863n
Hashimoto K., Kato Z., Kumagai N., Kamio K., Hirose K. Sn – P alloys for rapid and stable production of tin solution for tin plating. ECS Transactions. 2006;1(4): 525–532. https://doi.org/10.1149/1.2215536
Kim Y., Hwang H., Yoon C. S., Kim M. G., Cho J. Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles: anode material for lithium-ion batteries. Advanced Materials. 2007;19(1): 92-96. https://doi.org/10.1002/adma.200600644
Kim Y., Kim Y., Choi A., Woo S., Mok D., Choi N.‑S., … Lee K. T. Tin phosphide as a promising anode material for Na-ion Batteries. Advanced Materials.2014;26(24): 4139-4145. https://doi.org/10.1002/adma.201305638
Liu S., Zhang H., Xu L., Ma L. Synthesis of hollow spherical tin phosphides (Sn4P3) and their high adsorp- tive and electrochemical performance. Journal of Crystal Growt. 2016;438: 31–37. https://doi.org/10.1016/j.jcrysgro.2015.12.018
Liu S., Zhang H., Xu L., Ma L. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. Journal of Power Sources. 2016;304: 346–353. https://doi.org/10.1016/j.jpowsour.2015.11.056
Ueda A., Nagao M., Inoue A., et al. Electrochemical performance of all-solid-state lithium batteries with Sn4P3 negative electrode. Journal of Power Sources. 2013;244: 597–600. https://doi.org/10.1016/j.jpowsour.2013.01.061
Liu S., Li S., Li M., Yan L., Li H. Synthesis of tin phosphides (Sn4P3) and their high photocatalytic activities. New Journal of Chemistry. 2013;37(3): 827–833. https://doi.org/10.1039/C2NJ41068K
Usui H., Sakata T., Shimizu M., Sakaguc hi H. Electrochemical Na-insertion/extraction properties of Sn–P anodes. Electrochemistry. 2015;83(10): 810–812. https://doi.org/10.5796/electrochemistry.83.810
Doh C. VASP calculation on lithium reaction to tin phosphides. In: ECS Meeting Abstracts. 2014. 255 p. https://doi.org/10.1149/ma2014-01/2/255
Vivian A. C. The tin-рhosphorus system. Journal of the Institute of Metals. 1920;23: 325–336.
Sushkova T. P., Kononova E. Yu., Savinova Yu. A., Dorokhina E. S., Semenova G. V. Intermediate phases in Sn - P system. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2014;16(1): 210–214. Available at: https://www.elibrary.ru/item.asp?id=21785802 (In Russ., abstract in Eng.)
Proskurina E. Yu., Semenova G. V., Zavrazhnov A. Yu., Kosyakov A. V. P-T-x diagram of Sn - P system. Condensed media and interphase boundaries. 2015;17(4): 498–509. Available at: https://www.elibrary.ru/item.asp?id=25946590 (In Russ., abstract in Eng.)
Sushkova T. P., Proskurina E. Yu., Semenova G. V., Zavrazhnov A. Yu. Thermal stability of tin monophosphide. In: Science and Education: materials of the XI international research and practice conference. Apr. 6th – 7th, 2016. Munich (Germany): 2016;1: 40–45.
Semenova G. V., Proskurina E. Yu., Sushkova T. P. T-x diagram of the Sn - P system. In: XX Mendeleev Congress on General and Applied Chemistry. Fundamental problems of chemical science. Abstracts. vol. 1. eptember 26-30, 2016. Yekaterinburg: 2016. p. 480. (In Russ.)
Zavrazhnov A. Yu., Semenova G. V., Proskurina E. Yu., Sushkova T. P. Phase diagram of the Sn - P system. In: 4th Central and Eastern European Conference on Thermal Analysis and Calorimetry (CEEC-TAC4). Abstracts. 28 - 31 August, 2017. Kishinev: 2017. p. 346.
Zavrazhnov A. Yu., Semenova G. V., Proskurina E. Yu., Sushkova T. P. Phase diagram of the Sn - P system. Journal of Thermal Analysis and Calorimetry. 018;134(1): 475–481. https://doi.org/10.1007/s10973-018-7123-0
Shevelyuhina A. V., Semenova G. V., Sushkova T. P. Phase diagram of the Sn – P system at concentration of phosphorus over 70 mol%. In: XVI International Conference on Thermal Analysis and Calorimetry (RTAC). Abstracts. 6 July 2020, Moscow (Russia). Moscow: 2020. p. 194.
Guo J., Liu Y., Ma Y., Zhu E., Lee S., Lu Z., … Duan X. Few-layer GeAs field-effect transistors and infrared. Advanced Materials. 2018;30(21): 1705934. https://doi.org/10.1002/adma.201705934
Lee K., Synnestvedt S., Bellard M., Kovnir K. GeP and (Ge1− xSnx)(P1− yGey) (x ≈ 0.12, y ≈ 0.05): Synthesis, structure, and properties of two-dimensional layered tetrel phosphides. ChemInform. 2015;46(18): 62–70. https://doi.org/10.1002/chin.201518016
Lee K., Kamali S., Ericsson T., Bellard M., Kovnir K. GeAs: Highly anisotropic van der Waals thermoelectric material. Chemistry of Materials. 2016;28(8): 2776–2785. https://doi.org/10.1021/acs.chemmater.6b00567
Pomerantseva E., Resini C., Kovnir K., Kolen‘ko Yu. Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X. 2017;2 (2): 211–253. https://doi.org/10.1080/23746149.2016.1273796
Zhao T., Sun Y., Shuai Z., Wang D. GeAs2: A IV–V group two-dimensional semiconductor with ultralow thermal conductivity and high thermoelectric efficiency. Chemistry of Materials. 2017;29(15): 6261–6268. https://doi.org/10.1021/acs.chemmater.7b01343
Proskurina E. Yu., Semenova G. V., Sushkova T. P. Phase equilibria in the Ge-As-Bi system. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2018;4: 27–34. Available at: https://www.elibrary.ru/item.asp?id=36664319 (In Russ., abstract in Eng.)
Semenova G. V., Kononova E. Yu., Sushkova T. P. Polythermal section Ge-SnAs of the Sn-As-Ge system. Russian Journal of Inorganic Chemistry. 2014;59(12): 1517-1521. https://doi.org/10.1134/s0036023614120225
Semenova G. V., Sushkova T. P., Proskurina E. Yu. Polythermal section Sn - GeAs of the Sn - As - Ge system. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2015;1: 49–53. Available at: https://www.elibrary.ru/item.asp?id=23478462 (In Russ., abstract in Eng.)
Proskurina E. Yu., Semenova G. V., Sushkova T. P. Topological scheme of phase equilibria in the Sn - As -Ge system. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2016;18(2): 241–247. Available at: https://www.elibrary.ru/item.asp?id=26023376 (In Russ., abstract in Eng.)
Proskurina E. Yu., Makagonov V. A, Semenova G. V., Sushkova T. P. Alloying with tin of the germanium monoarsenide. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2018;2: 41–47. Available at: https://www.elibrary.ru/item.asp?id=35350430 (In Russ., abstract in Eng.)
Semenova G., Proskurina E., Sushkova T., Semenov V. Phase diagram of the Sn–As–Ge system. Acta Chimica Slovenica. 2018;65(3): 662–669. https://doi.org/10.17344/acsi.2018.4333
Semenova G. V., Zabakhidze G. E., Goncharov E. G. Polythermal section SiAs-GeAs. Russian Journal of Inorganic Chemistry. 1997;42(10): 1596–1597.
Semenova G. V., Zabakhidze G. E., Goncharov E. G. Analysis of phase equilibria in the Si-Ge-As system. Russian Journal of Inorganic Chemistry. 1998;43(9): 1435–1437.
Ugai Ya. A., Muravyova S. N., Goncharov E. G. Diagramma sostoyaniya sistemy GeAs-GeP [State diagram of the GeAs-GeP system]. Izvestiya AN SSSR. Neorganicheskie materialy (Inorganic Materials). 1972;8(9): 1665–1666. (In Russ.)
Meshchaninova L. N., Goncharov E. G., Ugai Ya. A. R-T-x diagramma sostoyaniya sistemy SiAs- SiP [P-T-x state diagram of the SiAs-SiP system]. Russian Journal of Inorganic Chemistry. 1980;25(11): 3084–3088. Available at: https://www.elibrary.ru/item.asp?id=29096734 (In Russ.)
Ugai Ya. A., Goncharov E. G., Semenova G. V., Lazarev V. B. Fazovye ravnovesiya mezhdu fosforom, mysh’yakom, sur’moi i vismutom [Phase equilibria between phosphorus, arsenic, antimony and bismuth]. Moscow: Nauka Publ.; 1989. 233 p. (In Russ.)
Ugai Ya. A., Semenova G. V., Goncharov E. G. P-T-x diagramma sostoyaniya sistemy sur’ma - mysh’yak [P-T-x diagram of the state of the antimony - arsenic system]. Russian Journal of Inorganic Chemistry. 1985;30(6): 1532–1535. Available at: https://www.elibrary.ru/item.asp?id=28991560 (In Russ.)
Ugai Ya. A., Semenova G. V., Samoilov A. M., Goncharov E. G. Analiz fazovykh ravnovesii v sisteme Sb – As [Analysis of phase equilibria in the Sb - As system]. Izvestiya AN SSSR. Neorganicheskie materialy (Inorganic Materials). 1987;23(9): 1434–1437. Available at: https://www.elibrary.ru/item.asp?id=29030335 (In Russ.)
Ugai Ya. A., Semenova G. V., Goncharov E. G., Berendt E. Issledovanie P-T-x diagrammy sistemy fosfor - mysh’yak ekstrapolyatsionnym metodom [Study of the P-T-x diagram of the phosphorus – arsenic system by the extrapolation method]. Russian Journal of Inorganic Chemistry. 1979;24(12): 3344–3346. Available at: https://www.elibrary.ru/item.asp?id=28999582 (In Russ.)
Ugai Ya. A., Semenova G. V., Goncharov E. G. Raschet sostava para v sisteme fosfor - mysh’yak [Calculation of the composition of steam in the phosphorus - arsenic system]. Russian Journal of Physical Chemistry A. 1979;53(4): 1019–1020. Available at: https://www.elibrary.ru/item.asp?id=28998458 (In Russ.)
Ugai Ya. A., Semenova G. V., Goncharov E. G. Termodinamicheskii analiz fazovykh ravnovesii v sisteme fosfor - mysh’yak [Thermodynamic analysis of phase equilibria in the phosphorus - arsenic system]. Russian Journal of Physical Chemistry A. 1986;60(12): 2952–2954. Available at: https://www.elibrary.ru/item.asp?id=29003620 (In Russ.)
Krebs H., Weitz H., Worms K. H. Uber die strukture und eigenschaften der halbmetalls. Zeitschrift for anorganische und allgemeine Chemie. 1955;280(1/3): 119–133. https://doi.org/10.1002/zaac.19552800110
Krebs H., Holz W., Worms K. H. Eine neue rhombische arsen modifikation und ihre mischkristallbildunf
mit schwarzen phosphor. Chemische Berichte. 1957;90(6): 1031–1037. https://doi.org/10.1002/cber.19570900624
Pang J., Bachmatiuk A., Yin Y., Trzebicka B. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials. 2018;8(8): 1702093. https://doi.org/10.1002/aenm.201702093
Zeng J., Cui P., Zhang Z. Half layer by half layer growth of a blue phosphorene monolayer on a GaN(001) substrate. Physical Review Letters. 2017;118(4): 46101. https://doi.org/10.1103/PhysRevLett.118.046101
Niu T. New properties with old materials: Layered black phosphorous. Nano Today. 2017;12: 7–9. https://doi.org/10.1016/j.nantod.2016.08.013
Zhu Z., Tománek D. Semiconducting layered blue phosphorus: A computational study. Physical Review Letters. 2014;112(17): 176802. https://doi.org/10.1103/PhysRevLett.112.176802
Osters O., Nilges Т., Bachhuber F., Pielnhofer F, Weihrich R., Schöneich M., Schmidt P. Synthesis and identification of metastable compounds: Black arsenic – science or fiction? Angewandte Chemie International Edition. 2012;51(12): 2994–2997. https://doi.org/10.1002/anie.201106479
Goncharov E. G., Semenova G. V., Kalyuzhnaya M. I. Termograficheskoe issledovanie fazovoi diagrammy sistemy Ge-As-P [Thermographic study of the phase diagram of the Ge-As-P system]. Russian Journal of Inorganic Chemistry. 1992;37(8): 1895–1897. Available at: https://www.elibrary.ru/item.asp?id=29031293 (In Russ.)
Semenova G. V., Morozova A. A., Goncharov E. G., Dolgopolova E. A. Ge-As-P system. Russian Journal of Inorganic Chemistry. 1997;42(2): 266–268.
Semenova G. V., Morozova A. A., Goncharov E. G. Termodinamicheskii analiz R-T-kh- u fazovoi diagrammy sistemy Ge-As-P [Thermodynamic analysis of the P-T-x-y phase diagram of the Ge-As-P system]. Russian Journal of Inorganic Chemistry. 1993;38(12): 2023–2025. Available at: https://www.elibrary.ru/item.asp?id=29029850 (In Russ.)
Goncharov E. G., Semenova G. V. Kalyuzhnaya M. I., Solov’ev N. E. Politermicheskii razrez SiAs – SiP Polythermal section SiAs - SiP]. Russian Journal of Inorganic Chemistry. 1993;38(4): 709–710. Available at: https://www.elibrary.ru/item.asp?id=29029856 (In Russ.)
Semenova G. V., Sushkova T. P., Dolgopolova E. A., Morozova A. A. Tverdye rastvory v sisteme SiAs – SiP [Solid solutions in the SiAs - SiP system]. Russian Journal of Inorganic Chemistry. 2003;48(4): 582–584. Available at: https://www.elibrary.ru/item.asp?id=17278755 (In Russ.)
Semenova G. V., Morozova A. A., Goncharov E. G. Analiz fazovykh ravnovesii v sisteme Si-As-P [Analysis of phase equilibria in the Si-As-P system]. Russian Journal of Inorganic Chemistry. 1995;40(4): 658–660. Available at: https://www.elibrary.ru/item.asp?id=29053410 (In Russ.)
Semenova G. V., Goncharov E. G. Tverdye rastvory s uchastiem elementov pyatoi gruppy [Solid solutions with the participation of elements of the fifth group]. Moscow: Izd. MFTI Publ.; 2000. 160 p. (In Russ.)
Semenova G. V., Kononova E. Yu., Sushkova T. P. Polythermal section Sn4P3-Sn4As3. Russian Journal of Inorganic Chemistry. 2013;58(9): 1112–1114. https://doi.org/10.1134/S0036023613090192
Kononova E. Yu. , Sinyova S. I., Semenova G. V. , Sushkova T. P. Phase equilibria in the Sn–As–Ge and Sn–A–P systems. Journal of Thermal Analysis and Calorimetry.2014;117(3):1171–1177. https://doi.org/10.1007/s10973-014-3883-3
Semenova G. V., Sushkova T. P., Zinchenko E. N., Yakunin S. V. Solubility of phosphorus in tin monoarsenide. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(4): 644–649.
https://doi.org/10.17308/kcmf.2018.20/639 (In Russ., abstract in Eng.)
Semenova G. V., Sushkova T. P., Tarasova L. A., Proskurina E. Yu. Phase equilibria in a Sn – As – P system with a tin concentrations less than 50 mol%. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2017;19(3): 408–416. https://doi.org/10. 17308/kcmf.2017.19/218 (In Russ., abstract in Eng.)
Sushkova T. P., Sheveljuhina A. V., Semenova G. V., Proskurina E. Yu. The SnAs–P polythermic section of Sn–As–P ternary system. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(2): 287–295. https: //doi.org/10.17308 /kcmf.2019.21/766
Liu C.-W., Dai J.-J., Wu S.-K., Diep N.-Q., Huynh S.-H., Mai T.-T., … Luc H.-H.. Substrate-induced strain in 2D layered GaSe materials grown by molecular beam epitaxy. Scientific Reports. 2020;10(1): 12972.
https://doi.org/10.1038/s41598-020-69946-4
Zhou X., Cheng J., Zhou Y., Cao T., Hong H., Liao Z., … Yu D. Strong second-harmonic generation in atomic layered GaSe. Journal of the American Chemical Society. 2015;137(25): 7994–7997. https://doi.org/10.1021/jacs.5b04305
Olmstead M. A., Ohuchi F. S., Group III selenides: Controlling dimensionality, structure, and properties through defects and heteroepitaxial growth. Journal of Vacuum Science & Technology A. 2021;39(2): 020801. https://doi.org/10.1116/6.0000598
Marvan P., Mazánek V., Sofer Z. Shear-force exfoliation of indium and gallium chalcogenides for selective gas sensing applications. Nanoscale. 2019;11(10): 4310–4317 https://doi.org/10.1039/C8NR09294J
Woods-Robinson R., Han Y., Zhang H., Ablekim T., Khan I., Persson K. A., Zakutayev A. Wide band gap halcogenide semiconductors. Chemical Reviews. 2020;120(9): 4007–4055. https://doi.org/10.1021/acs.chemrev.9b00600
Zavrazhnov A. Yu, Turchen D. N, Goncharov Eu. G., Zlomanov V. P. Manometric method for the study of P-T-X diagrams. Journal of Phase Equilibria. 2001; 22(4): 482–490. https://doi.org/10.1361/105497101770333063
Zavrazhnov A. Yu. Design of P-T-x diagrams for gallium chalcogenides with the use of an ancillary component. Russian Journal of Inorganic Chemistry. 2003;48(10): 1577–1590.
Kosyakov A. V., Zavrazhnov A. Yu., Naumov A. V., Sergeeva A. S. Specification of the phase diagram of system In-S according to spectrophotometric researches of balance between sulfide of indium and hydrogen. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2009;2: 28–39. Available at: https://www.elibrary.ru/item.asp?id=12992199 (In Russ., abstract in Eng.)
Kosyakov A. V., Zavrazhnov A. Y. Naumov A. V . Refinement of the In-S phase diagram using spectrophotometric characterization of equilibria between hydrogen and indium sulfides. Inorganic Materials. 2010;46(4): 343–345 (2010). https://doi.org/10.1134/S0020168510040035
Zavrazhnov A. Y., Kosyakov A. V., Naumov A. V., Sergeeva A. V., Berezin S. S. Study of the In–S phase diagram using spectrophotometric characterization of equilibria between hydrogen and indium sulfides. Thermochimica Acta Journal. 2013;566: 169–174. https://doi.org/10.1016/j.tca.2013.05.031
Zavrazhnov A. Y., Turchen D. N., Naumov A. V., Zlomanov V. P. Chemical transport reactions as a new variant of the phase composition control. Journal of Phase Equilibria. 2003;24(4): 330–339. https://doi.org/10.1361/105497103770330316
Zavrazhnov A. Y., Turchen D. N., Naumov A. V., Zlomanov V. P. Chemical vapor transport as a means of controlling the composition of condensed phases. Inorganic Materials. 2004;40(2): 101–127. https://doi.org/10.1007/s10789-005-0056-6
Sidei V. I., Naumov A. V, Turchen D. N., Chukichev V. M. Upravlenie sostavom monoselenida galliya v predelakh oblasti gomogennosti i diagnostika nestekhiometrii GaSe [Controlling the composition of gallium monoselenide within the homogeneity region and diagnostics of GaSe nonstoichiometry]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2004;6(4): 322–325. Available at: https://www.elibrary.ru/item.asp?id=29833369 (In Russ.)
Zavrazhnov A. Yu., Zartsyn I. D., Naumov A. V., Zlomanov V. P., Davydov A. V. Composition control of low-olatile solids through chemical vapor transport reactions. I. Theory of selective chemical vapor transport. Journal of Phase Equilibria and Diffusion. 2007;28(6): 510–516. https://doi.org/10.1007/s11669-007-9200-0
Zavrazhnov A., Naumov A., Sidey V., Pervov V. Composition control of low-volatile solids through chemical apor transport reactions. III. The example of gallium monoselenide: Control of the polytypic structure, non-stoichiometry and properties. Thermochimica Acta Journal. 2012;527: 118124. https://doi.org/10.1016/j.tca.2011.10.012
Zavrazhnov A. Yu., Naumov A., Riazhskikh M., Pervov V. Chemical vapor transport for the control of composition of low-volatile solids: II. The composition control of indium sulfides: Technique of the charge dilution. Thermochimica Acta Journal. 2012;532: 96102. https://doi.org/10.1016/j.tca.2010.10.004
Zavrazhnov A. Y., Naumov A. V., Sergeeva A. V., Sidey V. I. Selective chemical vapor transport as a means of varying the composition of nonstoichiometric indium sulfides. Inorg Mater 2007;43(11): 1167–1178. https://doi.org/10.1134/S0020168507110039
Zavrazhnov A. Yu., Naumov A., Sergeeva A., Semenov V., Pervov V. Novel approach to the design of optoelectronic heterostructures based on copper and indium sulfides. J. Fudan University (Fudan Xuebao, China). 2007;46(5): 730.
Kosyakov A. V., Nekrylov I. N., Brezhnev N. Yu., Berezin S. S., Malygina E. N., Zavrazhnov A. Yu. Tx diagram of the Ga - Se system in the composition range from 48.0 to 61.5 % Se according to thermal analysis data. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(4): 519–527.
https://doi.org/10.17308/kcmf.2019.21/2363 (In Russ., abstract in Eng.)
Berezin S. S., Berezina M. V., Zavrazhnov A. Y., Kosyakov A. V., Sergeeva A. V., Sidei V. I. Phase ransformations of indium mono- and sesquisulfides studied by a novel static thermal analysis technique. Inorganic Materials. 2013;49: 555–563. https://doi.org/10.1134/S0020168513060010
Berezin S. S., Spesivtseva A. P., Zavrazhnov A. Yu., Okushko A. I. Iron sulfides crystal growth at controlled sulfur pressure with the use of metal-halogenide melts. 2015;17(4): 412–416. Available at: https://www.elibrary.ru/item.asp?id=25946576 (In Russ., abstract in Eng.)
Zavrazhnov A. Y., Naumov A., Kosyakov A., Berezin S., Volkov V., Sergeeva A. The iron sulfides crystal growth from the halide melts. Materials Research. 2018;21(4): e20170648 . https://doi.org/10.1590/1980-5373-mr-2017-0648
Zavrazhnov A., Naumov A., Kosykov A., Kovygin Y. New way of the skeletal metal synthesis. J. Fudan University (Fudan Xuebao, China). 2007;46(5): 786.
Kosyakov A. V., Zavrazhnov A. Y., Naumov A. V., Nazarova A. A., Zlomanov V. P. Chemical vapor transport: A viable approach to controlling the composition of intermetallic phases promising for catalyst engineering. Inorganic Materials. 2007;43(11): 1199–1205. https://doi.org/10.1134/S0020168507110088
Kosyakov A. V., Zavrazhnov A. Yu. Equilibrium in the reaction between nickel or gallium in nickel solid solutions and of with carbon monoxide Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2017;19(1): 68–79. Available at: https://www.elibrary.ru/item.asp?id=29033318 (In Russ., abstract in Eng.)
Zavrazhnov A. Yu., Kosyakov A. V., Sergeeva A. V., Berezin S. S., Chernenko K. K. High-temperature in situ vapor spectrophotometry as a static variant of tensimetric method equilibria in the Ga-I system. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2015;17(4): 417–436. Available at: https://www.elibrary.ru/item.asp?id=25946578 (In Russ., abstract in Eng.)
Zavrazhnov A. Yu., Naumov A. V., Malygina E. N., Kosyakov A. V. Indium monochloride vapor pressure: the vapor-gauge and spectrophotometric experimaental data. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(1): 60–71. https://doi.org/10.17308/kcmf.2019.21/717
Berezin S. S. Fazovye ravnovesiya v sistemakh Fe-S, Ga-S i sintez sul’fidov galliya i zheleza s ispol’zovaniem galogenidov FeХ2 (X ≠ F) и GaI3. Diss. Cand. Chem. Sciences / Voronezh: Voronezh State University; 2018. 239 p. Available at: https://www.dissercat.com/content/fazovye-ravnovesiya-v-sistemakh-fe-s-ga-s-i-sintezsulfidov-
galliya-i-zheleza-s-ispolzovanie (In Russ.).
Zavrazhnov A. Y., Berezin S. S., Kosykov A., Naumov A., Berezina M., Brezhnev N. The phase diagram of the Ga–S system in the concentration range of 48.0–60.7 mol%. Journal of Thermal Analysis and Calorimetry. 2018;134(1): 483–492 https://doi.org/10.1007/s10973-018-7124-z
Volkov V. V., Sidey V. I., Naumov A. V., Nekrylov I. N., Brezhnev N. Yu.; Malygina E. N., Zavrazhnov A. Yu. The cubic high-temperture modification of gallium sulphide (xS = 59 mol%) and the T, x-diagram of the Ga – S system Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(1): 37–50. https://doi.org/10.17308/kcmf.2019.21/715
Copyright (c) 2021 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.