HIGH TEMPERATURE ANNEALING INFLUENCE ON STRUCTURE AND COMPOSITION OF a-Si/ZrO2 AND a-SiOx/ZrO2 MULTILAYERED NANOPERIODICAL STRUCTURES BY SYNCHROTRON XANES INVESTIGATIONS

  • Dmitry A. Koyuda Researcher, Joint Laboratory "Electronic Structure of Solids", Voronezh State University, Voronezh, Russia; tel.: +7(473) 2208363, e-mail: koyuda@phys.vsu.ru
  • Vladimir A. Terekhov Dr. Sci. (Phys.-Math.), Full Professor, Solid State Physic and Nanostructures Department, Voronezh State University, Voronezh, Russia; tel.: +7(473) 2208363, e-mail: ftt@phys.vsu.ru
  • Alexey V. Ershov Cand. Sci. (Phys.–Math.), Associate Professor, Department of Physics of Semiconductors and Optoelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia; tel.: +7(831) 4623306, e-mail: ershov@phys.unn.ru
  • Elena V. Parinova Cand. Sci. (Phys.–Math.), Researcher, Solid State Physic and Nanostructures Department, Voronezh State University, Voronezh, Russia; tel.: +7(473) 2208363, e-mail: parinova@phys.vsu.ru
  • Irina A. Karabanova Leading Electronic, Department of Physics of Semiconductors and Optoelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia; tel.: +7(831) 4623306, e-mail: karabanova@phys.unn.ru
  • Sergey Yu. Turishchev Dr. Sci. (Phys.-Math.), Associate Professor, Solid State Physic and NanostructuresDepartment, Voronezh State University, Voronezh, Russia; tel.: +7(473) 2208363, e-mail: tsu@phys.vsu.ru
  • Alexandra K. Pisliaruk Student, Solid State Physic and Nanostructures Department, Voronezh State University, Voronezh, Russia; tel.: +7(473) 2208363, e-mail: pisliaruk@phys.vsu.ru
Keywords: multilayer nano periodal structures, nanocrystals, silicon, silicon oxides, electronic structure, phase composition, synchrotron radiation, XANES.

Abstract

With the use of high brilliance synchrotron radiation the composition and structure of a-Si/ZrO2 and a-SiOx/ZrO2 multilayered nanoperiodical structures subjected to high temperature annealing were investigated. Each ZrO2 layers thickness was 2 nm while for a-Si or a-SiOx layers thickness was 8 nm with total number of layers 34 (a-SiOx/ZrO2) and 43 (a-SiOx/ZrO2). Annealing was performed for 30 minutes at temperatures from 500 °С to 1100 °С. X-ray absorption near edge structure spectroscopy technique was applied for detecting information about local partial density of free electronic states in conduction band relative to K core level of silicon with probing depth of about 65 nm. This technique is very sensitive to the local surrounding of given atoms (silicon in our case). It was shown that initial (not annealed) structures of both types contained elementary silicon and different silicon suboxides with oxidation degree less than 2. Annealing in 500 °С - 900 °С  temperature range resulted in elementary silicon appearance in multilayered nanoperiodical structures but without silicon nanocrystals formation. Annealing at 1100 °С led to increasing of ordering in silicon atoms relative positions. Synchrotron X-rays absorption near edge fine structures relative intensity distribution did not reveal spectral features that are specific for ZrSiO4 silicates formation. Moreover the indirect evidence of zirconium silicide ZrSi2 formation for a-Si/ZrO2 multilayered nanoperiodical structures was observed after their annealing at 1100 °С.

 

ACKNOWLEDGEMENTS

The work was supported by the Ministry of Education and Science of Russia within the framework of the state task for higher education organizations in science for 2017–2019. Project No. 16.8158.2017/8.9.

Downloads

Download data is not yet available.

References

1. Canham L. T. Appl. Phys. Lett., 1990, vol. 57, no. 10, p. 1046. DOI: 10.1063/1.103561
2. Pavesi L., Turan R. Silicon Nanocrystals. WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei, 2010, 652 p. DOI: 10.1002/9783527629954
3. Grom G. F., Lockwood D. J., McCaffrey J. P., Labbé H. J., Fauchet P. M., White Jr. B., Deiner J., Kovalev D., Koch F., Tsybeskov L. Nature, 2000, vol. 407, p. 358. DOI: 10.1038/35030062
4. Zacharias M., Heitmann J., Scholz R., Kahler U., Schmidt M., Bläsing J. Appl. Phys. Lett., 2002, vol. 80, no. 4, p. 661. DOI: 10.1063/1.1433906
5. Ershov A. V., Tetelbaum D. I., Chugrov I. A., Mashin A. I., Mikhaylov A. N., Nezhdanov A. V., Ershov A. A., Karabanova I. A. Semiconductors, 2011, vol. 45, no. 6, p. 731. DOI: 10.1134/S1063782611060108
6. Ershov A. V., Pavlov D. A., Grachev D. A., Bobrov A. I., Karabanova I. A., Chugrov I. A., Tetelbaum D. I. Semiconductors, 2014, vol. 48, no. 1, p. 42. DOI: 10.1134/S1063782614010114
7. Ershov A. V., Chugrov I. A., Tetelbaum D. I., Mashin A. I., Pavlov D. A., Nezhdanov A.V., Bobrov A. I., Grachev D. A. Semiconductors, 2013, vol. 47, no. 4, p. 481. DOI: 10.1134/S1063782613040064
8. Turishchev S. Yu., Terekhov V. A., Koyuda D. A., Pankov K. N., Domashevskaya E. P., Ershov A. V., Chugrov I. A., Mashin A. I. Surface and Interface Analysis, 2012, vol. 44, no. 8, p. 1182. DOI: 10.1002/sia.4868
9. Turishchev S. Yu., Terekhov V. A., Koyuda D. A., Pankov K. N., Ershov A. V., Grachev D. A., Mashin A. I., Domashevskaya E. P. Semiconductors, 2013, vol. 47, no. 10, p. 1316. DOI: 10.1134/S106378261310028X
10. Turishchev S. Yu., Terekhov V. A., Koyuda D. A., Spirin D. E., Parinova E. V., Nesterov D. N., Grachev D. A., Karabanova I. A., Ershov A. V., Mashin A. I., Domashevskaya E. P. Semiconductors, 2015, vol. 49, no. 3, p. 409. DOI: 10.1134/S1063782615030227
11. Wilk G. D., Wallace R. M., Anthony J. M. J. Appl. Phys., 2001, vol. 89, no. 10, p. 5243. DOI: 10.1063/1.1361065
12. Turishchev S. Yu., Koyuda D. A., Terekhov V. A., Parinova E. V., Nesterov D. N., Grachev D. A., Karabanova I. A., Ershov A. V., Mashin A. I., Domashevskaya E. P. Condensed Matter And Interphases, 2016, vol. 18, no. 4, p. 558 DOI: 10.17308/kcmf.2016.18/166 (In Russ.)
13. Sullivan B. T., Lockwood D. J., Labbe H. J., Lu Z.-H. Appl. Phys. Lett., 1996, vol. 69, no. 21, p. 3149. DOI: 10.1063/1.116811
14. Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H. Appl. Surf. Science, 1996, vol. 99, no. 4, p. 303. DOI: 10.1016/0169-4332(96)00454-0
15. Manyakin M. D., Kurganskii S. I., Dubrovskii O. I., Chuvenkova O. A., Domashevskaya E. P., Turishchev S. Yu. Physics of the Solid State, 2016, vol. 58, no. 12, p. 2379. DOI: 10.1134/S1063783416120192
16. Erbil A., Cargill III G. S., Frahm R., Boehme R. F. Phys. Rev. B, 1988, vol. 37, no. 5, p. 2450. DOI: 10.1103/PhysRevB.37.2450
17. Rumsh M. A., Lukirskii A. P., Shchemelev V. N. Izvestiya AN SSSR. Seriya fizicheskaya, 1961, vol. 25, no. 8, p. 1060. (in Russ.)
18. Barranco A., Yubero F., Espinós J. P., Groening P., González-Elipe A. R. J. Appl. Phys., 2005, vol. 97, no. 11, p. 113714. DOI: 10.1063/1.1927278
19. Bianconi A., Di Cicco A., Pavel N. V., Benfatto M., Marcelli A., Natoli C. R., Pianetta P., Woicik J. Phys. Rev. B, 1987, vol. 36, no. 12, p. 6426. DOI: 10.1103/PhysRevB.36.6426
20. Gribelyuk M. A., Callegari A., Gusev E. P., Copel M., Buchanan D. A. J. Appl. Phys., 2002, vol. 92, no. 3, p. 1232. DOI: 10.1063/1.1486036
21. Turishchev S. Y., Parinova E. V., Koyuda D. A., Spirin D. E., Nesterov D. N., Romantsov R. V., Fedotovа J. A., Streltsov E. A., Malashchonak M. V., Fedotov A. K. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki [Materials of Electronics Engineering], 2016, vol. 19, no. 1, p. 50. DOI: 10.17073/1609-3577-2016-1-50-58 (In Russ.)
22. Turishchev S. Yu., Terekhov V. A., Koyuda D. A., Ershov A. V., Mashin A. I., Parinova E. V., Nesterov D. N., Grachev D. A., Karabanova I. A., Domashevskaya E. P. Semiconductors, 2017, vol. 51, no. 3, p. 349. DOI: 10.1134/S1063782617030241
23. Terekhov V. A., Turishchev S. Yu., Pankov K. N., Zanin I. E., Domashevskaya E. P., Tetelbaum D. I., Mikhailov A. N., Belov A. I., Nikolichev D. E., Zubkov S. Yu. Surface and Interface Analysis, 2010, vol. 42, no. 6-7, p. 891. DOI: 10.1002/sia.3338
24. Terekhov V. A., Tetelbaum D. I., Spirin D. E., Pankov K. N., Mikhailov A. N., Belov A. I., Ershov A. V., Turishchev S. Yu. J. Synchrotron Rad., 2014, vol. 21, no. 1, p. 209. DOI: 10.1107/S1600577513030026
Published
2018-09-13
How to Cite
Koyuda, D. A., Terekhov, V. A., Ershov, A. V., Parinova, E. V., Karabanova, I. A., Turishchev, S. Y., & Pisliaruk, A. K. (2018). HIGH TEMPERATURE ANNEALING INFLUENCE ON STRUCTURE AND COMPOSITION OF a-Si/ZrO2 AND a-SiOx/ZrO2 MULTILAYERED NANOPERIODICAL STRUCTURES BY SYNCHROTRON XANES INVESTIGATIONS. Condensed Matter and Interphases, 20(3), 401-412. https://doi.org/10.17308/kcmf.2018.20/585
Section
Статьи