STRUCTURE AND COMPOSITION EVOLUTION a-Si/ZrO2 AND a-SiOx/ZrO2 MULTILAYERED NANOPERIODICAL STRUCTURES UNDER HIGH TEMPERATURE ANNEAL
Abstract
With the use of scanning electron microscopy, atomic force microscopy and X-ray diffraction the morphology, composition and structure evolution of a-Si/ZrO2 and a-SiOx/ZrO2 multilayered nanoperiodical structures subjected to high temperature annealing were investigated. Each ZrO2 layers thickness was 2 nm while for a-Si or a-SiOx layers thickness was 8 nm with total number of layers 34 (a-SiOx/ZrO2) and 43 (a-SiOx/ZrO2). Annealing was performed for 30 minutes at temperature of 1100 °С. multilayered nanoperiodical structures have grainy relief with comparable morphology and size characteristics without noticeable dependence on layers interleaving sequence and their composition. 30 minutes anneal at 1100 °С for a-SiOx/ZrO2 multilayered nanoperiodical structures did not transform their surface. Under the same temperature for a-Si/ZrO2 multilayered nanoperiodical structures we observed noticeable changes in samples surface morphology as irregularities formation with 100 nm width and height that exceeds bilayer thickness. By X-ray diffraction technique the presence of thin ZrSi2 silicide layer is demonstrated in a-Si/ZrO2 structures as the result of silicon chemical interaction with zirconium dioxide under high temperature treatment of nanoperiodical multilayers.
ACKNOWLEDGMENTS
The work was supported by the Ministry of Education and Science of Russia within the framework of the state task for higher education organizations in science for 2017–2019. Project No. 16.8158.2017/8.9. Authors are grateful for I. A. Karabanova for methodical help in samples formation. The investigations results were obtained using resources of the Voronezh state university center for collective use of scientific equipment.
Downloads
References
2. Ershov A. V., Tetelbaum D. I., Chugrov I. A., Mashin A. I., Mikhaylov A. N., Nezhdanov A.V., Ershov A. A., Karabanova I. A. Semiconductors, 2011, vol. 45, no. 6, p. 731. DOI: 10.1134/S1063782611060108
3. Grom G. F., Lockwood D. J., McCaffrey J. P., Labbé H. J., Fauchet P. M., White Jr. B., Deiner J., Kovalev D., Koch F., Tsybeskov L. Nature, 2000, vol. 407, p. 358. DOI: 10.1038/35030062
4. Zacharias M., Heitmann J., Scholz R., Kahler U., Schmidt M., Bläsing J. Appl. Phys. Lett., 2002, vol. 80, no. 4, p. 661. DOI: 10.1063/1.1433906
5. Ledoux G., Gong J., Huisken F., Guillois O., Reynaud C. Appl. Phys. Lett., 2002, vol. 80, no. 25, p. 4834. DOI: 10.1063/1.1485302
6. Sivakov V. A., Voigt F., Berger A., Bauer G., Christiansen S. H. Phys. Rev. B, 2010, vol. 82, p. 125446. DOI: 10.1103/PhysRevB.82.125446
7. Turishchev S. Yu., Terekhov V. A., Nesterov D. N., Koltygina K. G., Spirin D. E., Parinova E. V., Koyuda D. A., Schleusener A., Sivakov V., Domashevskaya E. P. Condensed Matter And Interphases, 2016, vol. 18, no. 1, p. 130. (in Russ.)
8. Mangolini L., Thimsen E., Kortshagen U. Nanoletters, 2005, vol. 5, no. 4, p. 655. DOI: 10.1021/nl050066y
9. Terekhov V. A., Turishchev S. Yu., Pankov K. N., Zanin I. E., Domashevskaya E. P., Tetelbaum D. I., Mikhailov A. N., Belov A. I., Nikolichev D. E., Zubkov S. Yu. Surface and Interface Analysis, 2010, vol. 42, no. 6-7, p. 891. DOI: 10.1002/sia.3338
10. Ledoux G., Guillois O., Porterat D., Reynaud C., Huisken F., Kohn B., Paillard V.
1. Phys. Rev. B, 2000, vol. 62, p. 15942. DOI: 10.1103/PhysRevB.62.15942
11. Terekhov V. A., Kashkarov V. M., Turishchev S. Yu., Pankov K. N., Volodin V. A., Efremov M. D., Marin D. V., Cherkov A. G., Goryainov S. V., Korchagin A. I., Cherepkov V. V., Lavrukhin A. V., Fadeev S. N., Salimov R. A., Bardakhanov S. P. Journal of Materials Science and Engineering B, 2008, vol. 147, no. 2 – 3, p. 222. DOI: 10.1016/j.mseb.2007.08.014
12. Ershov A. V., Pavlov D. A., Grachev D. A., Bobrov A. I., Karabanova I. A., Chugrov I. A., Tetelbaum D. I. Semiconductors, 2014, vol. 48, no. 1, p. 42. DOI: 10.1134/S1063782614010114
13. Ershov A. V., Chugrov I. A., Tetelbaum D. I., Mashin A. I., Pavlov D. A., Nezhdanov A. V., Bobrov A. I., Grachev D. A. Semiconductors, 2013, vol. 47, no. 4, p. 481. DOI: 10.1134/S1063782613040064
14. Ershov A. V., Tetelbaum D. I., Chugrov I. A., Belov A. I., Vasiliev V. K., Ershov A. A., Karabanova I. A., Mashin A. I., Mikhaylov A. N., Nezhdanov A. V. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Bulletin of Lobachevsky State University of Nizhni Novgorod], 2010, no. 1, p. 37. (In Russ.).
15. Ershov A. V., Chugrov I. A., Tetelbaum D. I., Andreev S. S., Belov A. I., Vainer Yu. A., Ershov A. A., Karabanova I. A., Mashin A. I., Mikhailov A. N. Fizika tverdogo tela. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Physics of the Solid State. Bulletin of Lobachevsky State University of Nizhni Novgorod], 2009, no. 4, p. 45. (In Russ.)
16. Turishchev S. Yu., Koyuda D. A., Terekhov V. A., Parinova E. V., Nesterov D. N., Grachev D. A., Karabanova I. A., Ershov A. V., Mashin A. I., Domashevskaya E. P. Condensed Matter And Interphases, 2016, vol. 18, no. 4, p. 558. (In Russ.)
17. Gribelyuk M. A., Callegari A., Gusev E. P., Copel M., Buchanan D. A. J. Appl. Phys., 2002, vol. 92, no. 3, p. 1232. DOI: 10.1063/1.1486036
18. JCPDS-ICDD, 2016, PDF-2 database, 12 Campus Blvd, Newton Square, PA 19073, USA, card N 05-0565.
19. JCPDS-ICDD, 2016, PDF-2 database, 12 Campus Blvd, Newton Square, PA 19073, USA, card N 32-1499.
20. JCPDS-ICDD, 2016, PDF-2 database, 12 Campus Blvd, Newton Square, PA 19073, USA, card N 74-1053.
21. JCPDS-ICDD, 2016, PDF-2 database, 12 Campus Blvd, Newton Square, PA 19073, USA, card N 72-1272.