Effect of particle size and content of the metal on the oxygen reduction by silver–ion exchanger nanocomposites

  • Svetlana V. Khorolskaya post-graduated student of Physical Chemistry Department, Voronezh State University, tel. (473) 2208-538, email: khorolskaya@chem.vsu.ru
  • Sergey V. Peshkov PhD, principal industrial engineer of water treatment department of Hydrogas JSC, Voronezh
  • Tamara A. Kravchenko professor of Physical Chemistry Department, Voronezh State University, tel. (473) 2208-538, e-mail: krav@chem.vsu.ru
Ключевые слова: нанокомпозит, наночастица металла, ионообменник, реакция восстановления кислорода, редокс-сорбция, кинетика, размерный эффект, прекурсор, серебро.

Аннотация

В работе сообщается о получении новых серебросодержащих нанокомпозитов на основе
ионообменников с контролируемым размером наночастиц металла и содержанием металла.
Рассматривается процесс восстановительной сорбции растворенного в воде кислорода
серебросодержащими нанокомпозитами с частицами металла разного размера и содержания.
Кинетические исследования показали, что скорость восстановления молекулярного кислорода
возрастает с уменьшением размера частиц серебра и содержания серебра в нанокомпозите

Скачивания

Данные скачивания пока не доступны.

Литература

1.Nicolais L., Carotenuto G. Metal - Polymer Nanocomposites. N.Y.: Wiley, 2004.304 p.
2.Poole Ch., Owens F. Introduction to Nanotechnology. New Jersey: Wiley, 2003. 400 p.
3.Pomogailo A.D., Rozenberg A.S. Uflyand, I.E. Metal Nanoparticles in Polymers.
Khimiya: Moscow, 2000. 672 p.
4.Corain B., M. Zecca, P. Canton, P. Centomo. Synthesis and catalytic activity of metal
nanoclusters inside functional resins: an endeavour lasting 15 years // Phil. Trans. R. Soc.
A. 2010. V. 368. P. 1495–1507.
5.Zolotukhina E.V., Kravchenko T.A. Synthesis and kinetics of growth of metal
nanoparticles inside ion-exchange polymers // Electrochim. Acta. 2011. V. 56. P. 3597–
3604.
6.Yaroslavtsev A.B., Nikonenko V.V. Ion-exchange membrane materials: properties,
modification, and practical application // Nanotechnol. Russia. 2009. V. 4. P. 137-159.
7.Sergeev G.B. Nanochemistry. Moscow: Mosc. Gos. Univ., 2003. 288 p.
8.Domènech B., Bastos-Arrieta J., Alonso A., Macanás J., Muñoz M., and Muraviev
D.N. // Ion Exchange Technologies / Ed. by A. Kilislioğlu. Rijeka: InTech, 2012. P. 35-72.
9.Ruiz P., Muñoz M., Macanás J., Muraviev D.N. Intermatrix synthesis of polymerstabilized
PGM@Cu core–shell nanoparticles with enhanced electrocatalytic properties //
React. Funct. Polym. 2011. V. 71. P. 916-924.
10. Kravchenko T.A., Chayka M.Yu., Konev D.V., Polyanskiy L.N., Krysanov V.A. The
influence of the ion-exchange groups nature and the degree of chemical activation by silver
on the process of copper electrodeposition into the ion exchanger // Electrochim. Acta.
2007. V. 53. P. 330-336.
11. Kravchenko T., Khorolskaya S., Polyanskiy L., Kipriyanova E. Investigation of the
mass transfer process in metal-ion-exchanger nanocomposites // Nanocomposites:
Synthesis, Characterization and Applications / Ed. by X. Wang. N.Y.: Nova Science
Publishers, 2013. P. 329-348.
12. Sarkar S., Chatterjee P.K., Cumball L.H., SenGupta A.K. Hybrid ion exchanger
supported nanocomposites: Sorption and sensing for environmental applications // Chem.
Eng. J. 2011. V. 166. P. 923–931.
13. Sarkar S., Guibal E., Quignard F., SenGupta A.K. Polymer-supported metals and
metal oxide nanoparticles: synthesis, characterization, and applications // J Nanopart. Res.
2012. V. 14: 715.
14. Kuhlmann A., Roessner F., Schwieger W., Gravenhorst O., Selvam T. New
bifunctional catalyst based on Pt containing layered silicate Na-ilerit // Catal. Today. 2004.
V. 97. P. 303–306.
15. Wang Q., Yu H., Zhong L., Liu J., Sun J., Shen J. Incorporation of silver ions into
ultrathin titanium phosphate films: In situ reduction to prepare silver nanoparticles and
their antibacterial activity // Chem. Mater. 2006. V. 18. P. 1988-1994.
16. Kravchenko T.A., Polyanskiy L.N., Krysanov V.A., Zelensky E.S., Kalinitchev
A.I., Hoell W.H. Chemical precipitation of copper from copper–zinc solutions onto
selective sorbents // Hydromet. 2009. V. 95. P. 141–144.
17. Kravchenko T.A., Polyanskiy L.N., Kalinichev A.I., Konev D.V. Metal–Ion
Exchanger Nanocomposites. Moscow: Nauka, 2009. 391 p.
18. Kozhevnikov A.V. Electron-Ion Exchangers: A New Group of Redoxites. N.Y.:
Wiley, 1975. 129 p.
19. Sinha V., Li K. Alternative methods for dissolved oxygen removal from water: a
comparative study // Desalination. 2000. V. 12. P. 155-164.
20. Shi W., Cui C., Zhao L., Yu Sh., Yun X. Removal of dissolved oxygen from water
using a Pd-resin based catalytic reactor // Front. Chem. Eng. China. 2009. V. 3. P. 107–
111.
21. Grzelczak M., Vermant J., Furst E.M., Liz-Marzan L.M. Directed self-assembly of
nanoparticles // ACS Nano. 2010. V. 4. P. 3591–3605.
22. Rostovshchikova T.N., Smirnov V.V., Kozhevin V.M., Yavsin D.A., Gurevich S.A.
Intercluster interactions in catalysis by metal nanoparticles // Ross. Nanotekhnol. 2007.
V.2 (1-2). P.47-60.
23. Nikolskiy B.P. Chemists Manual. Moscow-Leningrad: Khimiya, 1964. Vol. 3. pp.
229-230.
24. Guo A., Yin X., Fan K., Dai W.L. Influence of copper precursors on the structure
evolution and catalytic performance of Cu/HMS catalysts in the hydrogenation of dimethyl
oxalate to ethylene glycol // Appl. Catal. 2010. V. 377. P. 128-133.
25. Yang Y., Zhou Y. Particle size effects for oxygen reduction on dispersed silver +
carbon electrodes in alkaline solution // J. Electroanal. Chem. 1995. V. 397. P. 271-278.
26. Sviridov V.V. Chemical Deposition of Metals from Aqueous Solutions. Minsk:
Universitetskoe, 1987. 270 p.
27. Peshkov S.V., Kravchenko T.A., Konev D.V., Kipriyanova E.S., Chepkova S.P. //
Sorbtsion. Khromatogr. Protsessy. 2009. V. 9. I. 2. P. 221-232.
28. Zhang X., Qu Zh.,Yu F.,Wang Y., Zhang X. Effects of pretreatment atmosphere
and silver loading on the structure and catalytic activity of Ag/SBA-15 catalysts // J. Mol.
Catal. A. 2013. V. 370. P. 160–166.
Опубликован
2019-11-22
Как цитировать
Khorolskaya, S. V., Peshkov, S. V., & Kravchenko, T. A. (2019). Effect of particle size and content of the metal on the oxygen reduction by silver–ion exchanger nanocomposites. Сорбционные и хроматографические процессы, 13(6). извлечено от https://journals.vsu.ru/sorpchrom/article/view/1729